

Universal Bipotentiostat

390.1 Introduction

Bruker's Universal BipotentiostatTM brings new electrochemical capability to Bruker microscopes. Features include:

- Compatible with all Bruker NanoScopeTM Controllers and Microscopes.
- Has 7 decades of gain, from 100nA/V to 100mA/V with a current resolution of 100pA.
- Supports ECAFM (ElectroChemical Atomic Force Microscopy) in TappingModeTM.
- Supports SECPM (Scanning ElectroChemical Potential Microscope) and STS (Scanning Tunneling Spectroscopy).

Document Revision History: Universal Bipotentiostat

Revision	Date	Section(s) Affected	Reference	Approval
Е	01-28-2011	Re-branded		Ruth Wishengrad
D	30-April-2007	3.3, 4.5		Vinson Kelley
С	10-May-2005	Appendix B		Vinson Kelley
В	14-Mar-2005	All		Vinson Kelley
А	11-Mar-2004	Initial Release		Vinson Kelley

Part Number: 013-390-000

Introduction

The contents of this support note are: **Introduction:** Page 1 Scope of this Document: Page 3 **Conventions and Definitions:** Page 3 System Specifications: Page 4 Safety Precautions: Page 5 **Installation:** Page 7 Unpacking the Universal Bipotentiostat: Page 7 Universal Bipotentiostat Component List: Page 8 **Connecting the Universal Bipotentiostat: Page 8 Configuration:** Page 15 Power Up: Page 16 **Operation:** Page 17 Front Panel Operation: Page 17 Potential and Bias Modulation: Page 21 NanoScope Software Version 5 Operation: Page 21 NanoScope Software Version 6 Operation: Page 25 NanoScope Software Version 7 Operation: Page 29 Maintenance: Page 34 Appendix A: Jumper and Dip Switch Settings: Page 35 Appendix B: Upgrading the Universal Bipotentiostat Firmware: Page 37 MultiMode Jumper Settings: Page 40

390.1.1 Scope of this Document

This document discusses the hardware and software specific to the Bruker Universal Bipotentiostat. Additional information, including electrochemical cell connections, can be found in the *Electrochemical SPM Manual*, the *Dimension 3100 and Dimension V Instruction Manuals*, the *MultiMode and MultiMode V SPM Instruction Manuals*, the *EnviroScope Manual*, the *NanoScope IIIa, IV(a) or V Controller Manuals* and the *Command Reference Manual*.

390.1.2 Conventions and Definitions

Note: In the interest of clarity, certain nomenclature is preferred. A SPM *probe* comprises a *tip* affixed to a *cantilever* mounted on a *base*, which is inserted in a *probe holder*.

Three font styles distinguish among contexts. For example: <u>Window or Menu Item</u> / <u>BUTTON OR PARAMETER NAME</u> is set to VALUE.

390.1.3 System Specifications

Compliance voltage:	±12V
Potential range:	-10V to +10V
Bipotentiostat rise time:	< 100µs
Scan rate:	0.0003 to 10V/s
Minimum potential increment in CV:	0.3mV
Potential update rate:	1kHz
Current range:	0 to 100mA
Current sensitivity:	10nA to 10mA/V
Current measurement resolution:	< 50pA
Input impedance of reference electrode:	$> 10^{12} \Omega$
Maximum sampling rate:	100Hz
Bandwidth:	10kHz at 10mA/V
	1kHz at 10nA/V
Techniques:	CV, LSV

390.2 Safety Precautions

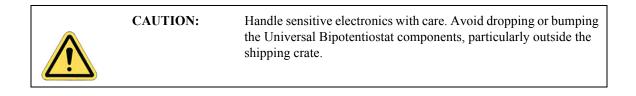
This section highlights cautions to observe operating the Universal Bipotentiostat. Additional cautions need to be observed when operating a Dimension, EnviroScope or MultiMode SPM; refer to the *Dimension Manual*, the *EnviroScope Manual* or the *MultiMode SPM Instruction Manual*.

Symbol	Definition
	This symbol identifies conditions or practices that could result in damage to the equipment or other property, and in extreme cases, possible personal injury.
	Ce symbole indique des conditions d'emploi ou des actions pouvant endommager les équipments ou accessoires, et qui, dans les cas extrêmes, peuvent conduire à des dom- mages corporels.
	Dieses Symbol beschreibt Zustaende oder Handlungen die das Geraet oder andere Gegenstaende beschaedigen koen- nen und in Extremfaellen zu Verletzungen fuehren koen- nen.
	This symbol identifies conditions or practices that involve potential electric shock hazard.
4	Ce symbole indique des conditions d'emploi ou des actions comportant un risque de choc électrique.
	Dieses Symbol beschreibt Zustaende oder Handlungen die einen elekrischen Schock verursachen koennen.

WARNING:	Service and adjustments should be performed only by qualified personnel who are aware of the hazards involved.
AVERTISSEMEN	NT:Tout entretien ou réparation doit être effectué par des personnes qualifiées et conscientes des dangers qui peuvent y être associés.
WARNUNG:	Service- und Einstellarbeiten sollten nur von qualifizierten Personen, die sich der auftretenden Gefahren bewußt sind, durchgeführt werden.

WARNING:	Follow company and government safety regulations. Keep unauthorized personnel out of the area when working on equipment.
AVERTISSEME	CNT: Il est impératif de suivre les prérogatives imposées tant au niveau gouvernmental qu'au niveau des entreprises. Les personnes non autorisées ne peuvent rester près du système lorsque celui-ci fonctionne.
WARNUNG:	Befolgen Sie die gesetzlichen Sicherheitsbestimmungen Ihres Landes. Halten Sie nicht authorisierte Personen während des Betriebs vom Gerät fern.

CAUTION:	When imaging fluid samples, use extraordinary precautions against spillage. Do not spill fluids on or around the sample holder, electronic boxes, or other components containing electronic parts. Avoid spilling all corrosive fluids on exposed surfaces; otherwise, damage may result! In the case of a spill, immediately clean and dry all affected surfaces carefully.
ATTENTION:	Lors d'un travail en milieu liquide, prendre toute précaution pour éviter des fuites. Les liquides ne doivent pas se répandre sur la platine porte échantillons, le boîtier électronique ou tout autre partie du microscope contenant de l'électronique. Eviter tout fuite de liquide corrosif sur les surfaces exposées. Le non respect de cette recommandation peut entraîner des dommages. En cas de fuite, nettoyer et sécher immédiatement les surfaces touchées.
VORSICHT:	Falls Sie Proben in Flüssigkeiten abbilden, lassen Sie äußerste Vorsicht walten, damit keine Flüssigkeit verspritzt wird. Flüssigkeiten dürfen nicht auf die oder nahe der Probenhalterung, der Elektronikbox oder anderen Komponenten, die elektronische Bauteile enthalten, verspritzt werden. Vermeiden Sie bitte, korrosive Flüssigkeiten auf freiliegende Oberflächen zu verspritzen; andernfalls wären Beschädigungen die Folge! Falls Sie Flüssigkeit verspritzt haben, säubern und trocknen Sie alle betroffenen Flächen sorgfältig.


WARNING:	Voltages supplied to and within certain areas of the system are potentially dangerous and can cause injury to personnel. Power- down all components and unplug from power sources before doing any electrical servicing. (Bruker service personnel, <i>only</i>).
AVERTISSEME	NT:Les tensions utilisées dans le système sont potentiellement dangeureuses et peuvent blesser les utilisateurs. Avant toute intervention électrique, ne pas oublier de débrancher le système. (Réservé au personnel de Bruker, seulement.)
WARNUNG:	Die elektrischen Spannungen, die dem System zugeführt werden, sowie Spannungen im System selbst sind potentiell gefährlich und können zu Verletzungen von Personen führen. Bevor elektrische Servicearbeiten irgendwelcher Art durchgeführt werden ist das System auszuschalten und vom Netz zu trennen. (Nur Bruker Personal.)

390.3 Installation

390.3.1 Unpacking the Universal Bipotentiostat

CAUTION:	Do not store the equipment outside, even in a dry weather location.

The Universal Bipotentiostat-specific components are packed together in one box. Carefully unpack the components from their crates.

Provide the proper environmental conditions (see Table 3a) for system operation and storage.

Equipment Use	Condition	Requirement
Operation	Temperature	15°C (59°F) to 35°C (95°F)
"	Relative Humidity	45% to 80%, non-condensing
Storage	Temperature	10°C (50°F) to 50°C (122°F)
"	Relative Humidity	35% to 90%, non-condensing

 Table 390.3a
 Environmental Requirements

390.3.2 Universal Bipotentiostat Component List

The Universal Bipotentiostat ships with a "monster" (DB-37) cable and, if you have a NanoScope IIIA with an ADC5 option, a NanoScope IV(a) or NanoScope V, a pair of BNC cables.

390.3.3 Connecting the Universal Bipotentiostat

In general, the Universal Bipotentiostat is connected in series between a NanoScope Controller and a Bruker Scanning Probe Microscope, normally adjacent to the controller. If needed, a Bruker ExtenderTM is placed between the Universal Bipotentiostat and the microscope while a Bruker QuadrexTM is placed between the controller and the Universal Bipotentiostat. A serial cable connects the Universal Bipotentiostat to the computer for serial communication; an Ethernet port is provided for future use. The cable used to connect the Universal Bipotentiostat to the EC cell is specific to each microscope.

Connect the Universal Bipotentiostat to the computer:

 Use a 9-pin serial cable to connect the right side of the Universal Bipotentiostat, shown in Figure 3b, to a free serial port on the computer. On the EnviroScope, this port is typically COM6.

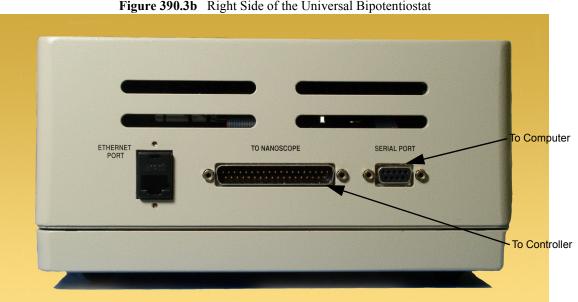


Figure 390.3b Right Side of the Universal Bipotentiostat

Connect the Universal Bipotentiostat to the NanoScope controller:

For a NanoScope V controller:

Connecting to the back panel:

- 1. Use the "monster" DB-37 cable to connect the port labeled TO NANOSCOPE on the right side of the Universal Bipotentiostat, shown in Figure 3b, to the port labeled Microscope on the 37 Pin Adapter on the front of the controller. See Figure 3c.
- 2. Connect one end of a BNC cable to the BNC connector labeled POTENTIAL OUT on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and the other end to the BNC connector labeled Input 1 on the front panel of the controller.
- 3. Connect one end of a BNC cable to the BNC connector labeled CURRENT OUT on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and the other end to the BNC connector labeled Input 2 on the front panel of the controller.

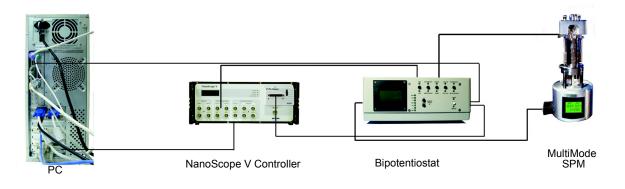


Figure 390.3c Basic NanoScope V Configuration

For a NanoScope IV or IVa controller:

Connecting to the back panel:

- Use the "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the right side of the Universal Bipotentiostat, shown in Figure 3b, to the port labeled TO MICROSCOPE on the back of the controller. See Figure 3d.
- 2. Connect one end of a BNC cable to the BNC connector labeled POTENTIAL OUT on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and the other end to the BNC connector labeled INPUT2 on the back panel of the controller.
- 3. Connect one end of a BNC cable to the BNC connector labeled CURRENT OUT on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and the other end to the BNC connector labeled INPUT3 on the back panel of the controller.

Connecting through the Emulation port on the front panel:

- 1. To run a non-extended ("standard") Multimode or STM, the Bipotentiostat needs to be connected to the NanoScope IV(a) controller through the Emulation port in the front of the controller. Open the port door, remove the twin connector, and connect a "monster" DB-37 cable and the Emulator adaptor to it. See the *NanoScope IV* (or *IVa*) *Controller Manual* 004-115-000 (or 004-114-000) for details.
- 2. Use the "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the right side of the Universal Bipotentiostat, shown in Figure 3b, to the Emulator Adaptor.

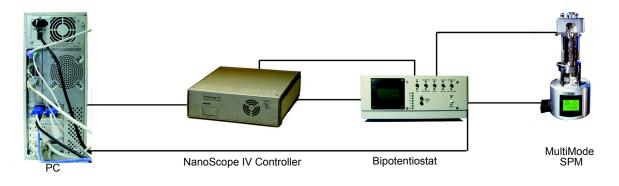
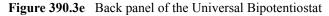



Figure 390.3d Basic NanoScope IV(a) Configuration

For a NanoScope Illa controller with ADC5:

- **Note:** NanoScope IIIa controllers require the ADC5 Option for use with the Universal Bipotentiostat.
- 1. Connect one end of a BNC cable to the BNC connector labeled POTENTIAL OUT on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and the other end to the BNC connector labeled AUX3 on the front panel of the controller.
- 2. Connect one end of the a BNC cable to the BNC connector labeled CURRENT OUT on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and the other end to the BNC connector labeled AUX4 on the front panel of the controller

3. **No Extender**: Use the "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the right side of the Universal Bipotentiostat, shown in Figure 3b, to the port labeled MICROSCOPE on the front of the controller. See Figure 3f.

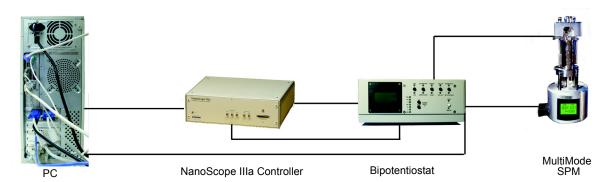
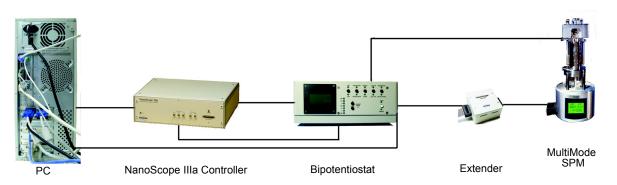



Figure 390.3f Basic NanoScope IIIa, or lower, Configuration

- 4. Extender: Use the "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the right side of the Universal Bipotentiostat, shown in Figure 3b, to the port labeled MICROSCOPE on the front of the controller. Use a second "monster" DB-37 cable to connect to the port labeled TO MICROSCOPE on the left side of the Universal Bipotentiostat, shown in Figure 3j, to the port labeled TO CONTROLLER on the Extender. See Figure 3g. Set the **TIP OR SAMPLE** switch on the Extender to **ANALOG 2**.
 - **Note:** SECPM is not compatible with the Extender. Use the Basic NanoScope IIIa configuration, shown in Figure 3f and select **NONE** for **EXTENDER** in the **Microscope Select** window.

Figure 390.3g Configuration with a NanoScope IIIa and an Extender

5. Quadrex Extender: Use the "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the Quadrex extender to the port labeled MICROSCOPE on the front of the controller. Use a second "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the left side of the Universal Bipotentiostat, shown in Figure 3b, to the port labeled TO CONTROLLER on the Extender. See Figure 3h.

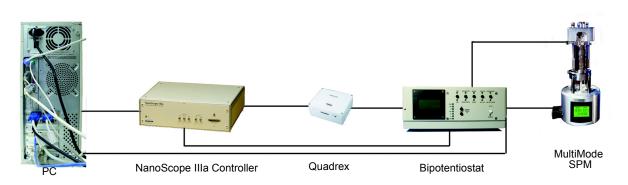


Figure 390.3h Configuration with a NanoScope IIIa and Quadrex

For a NanoScope IIIa, or lower, controller without ADC5:

1. Use the "monster" DB-37 cable to connect to the port labeled TO NANOSCOPE on the right side of the Universal Bipotentiostat, shown in Figure 3b, to the port labeled MICROSCOPE on the front of the controller. See Figure 3f.

Connect the Universal Bipotentiostat to the Microscope:

- 1. **No Extender or Quadrex**: Use the DB-37 cable to connect to the port labeled TO MICROSCOPE on the left side of the Universal Bipotentiostat, shown in Figure 3j, to the microscope.
- 2. **Extender**: Use the DB-37 cable to connect to the port labeled TO MICROSCOPE on the Extender to the Microscope base.
- 3. **EnviroScope**: Use the DB-37 cable to connect to the port labeled TO MICROSCOPE on the EnviroScope Controller to the EnviroScope.

Connect the Universal Bipotentiostat to the EC Cell:

- 1. **MultiMode or Standard STM**: Ensure that a jumper, shown in Figure 3i, is set between pins 2 and 3 on jumper JP1 of the MultiMode base. This connects the working electrode to the scanner cap. Connect the 9-pin D-micro-D cable to the port labeled TO EC CELL on the Bipotentiostat. Attach the 9-pin micro-D cable to the other end of the cable. Connect the orange clip to the reference electrode and the violet clip to the counter electrode of the EC cell. For SECPM, connect the SECPM head to the micro-D connector of the cable.
 - **Note:** For more information about MultiMode jumper settings, see **MultiMode Jumper Settings:** Page 40.

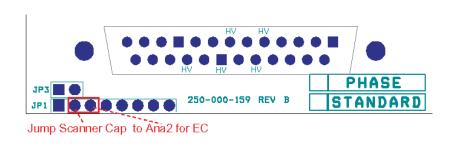


Figure 390.3i Jumper Setting for EC in MultiMode Base

2. **EnviroScope**: Connect leg of the EnviroScope stage interface cable labeled EC cell to the port labeled TO EC CELL on the left side of the Bipotentiostat. The cable makes the connections to the working, counter and reference electrodes in the EnviroScope EC cell.

Figure 390.3j Left Side of the Universal Bipotentiostat

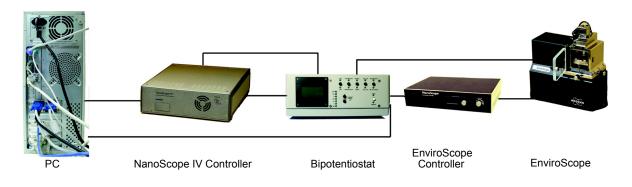
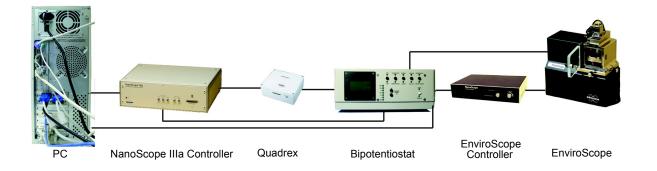



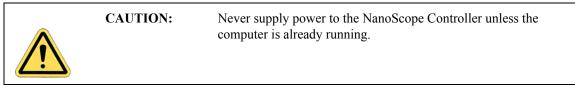
Figure 390.3k Configuration with a NanoScope IV(a) and an EnviroScope

Figure 390.31 Configuration with a NanoScope IIIa and an EnviroScope

390.3.4 Configuration

The Bipotentiostat is configured at Bruker before it is shipped. If you need to configure the Bipotentiostat for different controller, please refer to **Appendix A: Jumper and Dip Switch Settings:** Page 35. Three toggle switches can be set by the user if needed:

- **Note:** These steps are not needed if serial communication between the PC and Universal Bipotentiostat is enabled. See **NanoScope Software Version 5 Operation:** Page 21 or **NanoScope Software Version 7 Operation:** Page 29.
- 1. **SW1**: Toggles between MM for small sample microscopes such as MultiMode and DIM for microscopes with stages such as Dimension and EnviroScope.
- SW2: Toggles between EXT when an Extender, such as Quadrex, or a NanoScope IV(a) which includes Quadrex - is used or STD which is used for non-Extended, i.e. standard, systems.
- 3. **SW3**: NORMAL for normal operation and PROGRAM to upload/upgrade the microprocessor program.


Note: The PROGRAM feature should be used with caution.

390.3.5 Power Up

Important: Powering Sequence

After the unpowered hardware has been configured, attach their power cords to the computer and NanoScope controller and then connect these to appropriate power outlets. Always supply and remove power from components in the correct order.

If the computer is turned off, the NanoScope controller must also be unpowered.

Power on sequence:	 computer NanoScope controller
Power off sequence:	 1) NanoScope controller 2) computer

The Bipotentiostat receives power from the NanoScope controller and is thus powered up at the same time.

390.4 Operation

390.4.1 Front Panel Operation

The front panel, shown in Figure 4a, has the following controls:

	-	STM	GALVANOSTAT	NORMAL	CELL ON	POTENTIOSTAT
		•				•
	100m 🔘	AFM		DUMMY	CELL OFF	METER SCREEN
	1m 🔵		CURRENT			C C C C C C C C C C C C C C C C C C C
	10µ 🔵	(OOWN RANGE (A)			0
•	1μ 🔵		-			REMOTE
		100m • 100m • 10m • 100µ • 100µ • 100µ •	AFM 100m • 10m • 10m • 100. • 100. •	AFM POTENTIOSTAT	AFM POTENTIOSTAT DUMMY	AFM POTENTIOSTAT DUMMY CELL OFF

Figure 390.4a Front Panel

STM/AFM:

- **STM**: Selects the Scanning Tunneling Microscopy mode and sets the Universal Potentiostat to be a bipotentiostat, allowing biasing of the sample.
- **AFM**: Selects the Atomic Force Microscopy mode and sets the Universal Potentiostat to be a single potentiostat, virtually grounding the sample.

GALVANOSTAT/POTENTIOSTAT:

- **GALVANOSTAT**: Sets the Universal Bipotentiostat to the Galvanostatic mode. In other words, it controls current.
- **POTENTIOSTAT**: Sets the Universal Bipotentiostat to the Potentiostatic mode. In other words, it controls voltage.

NORMAL/DUMMY:

- **NORMAL**: Connects the electronics in the Universal Bipotentiostat to the electrochemical cell.
- **DUMMY**: Connects the working electrode, counter electrode and reference electrode to the internal dummy cell made of three 10kΩ resistors. This is used for diagnostic purposes.

CELL ON/CELL OFF:

- **CELL ON**: Turns the cell on, i.e. connects the counter electrode to the cell.
- **CELL OFF**: Turns the cell off, i.e. disconnects the counter electrode from the cell and puts the cell in an open circuit condition. The dummy cell's potential will be 0V while the electrochemical cell's potential will be the open circuit potential.

POTENTIOSTAT/METER SCREEN:

- **Note:** This is set to **METER SCREEN** whenever an Extender is used. This includes the NanoScope IV controller as well as NanoScope IIIa controllers used with either an Extender or Quadrex.
- **POTENTIOSTAT**: Used only for NanoScopeE, NanoScope III or NanoScope IIIa controllers without the ADC5 option. This blocks signal used in the **METER SCREEN** on the display monitor and is necessary in order to read the potential and current.
- **METER SCREEN**: Allows AFM meter signals to pass and allows their display in the display monitor.

CURRENT RANGE:

These buttons change the input current sensitivity, indicated by the LEDs at left. When REMOTE control is enabled, the NanoScope software sets and reads this information. When REMOTE control is disabled (i.e. LOCAL control), the user needs to enter the current sensitivity (that was locally set) in **Microscope** > **Calibrate** > **Detector** > **I CELL SENS (VERSION 5)**, shown in Figure 4b, OR TOOLS > CALIBRATE > DETECTOR (VERSION 6 or **VERSION 7)**, shown in Figure 4c and Figure 4d respectively.

- **UP**: Decreases the input current sensitivity.
- **DOWN**: Increases the input current sensitive.

Detector Calibration							
Serial number:	Serial number: xxxG						
Ebias Sens.:	1000 mV/V	Deflection Sens.:	1.000				
MR bias current Sens.:	2.500 mA/V	DCE bias current Sens.:	2.500 mA/V				
DC sample bias Sens.:	1.000 V/V	DC test bias Sens.:	1.000 V/V				
TUNA Current Sens.:	10.00 pA/V	Potential Sens.:	1.000 V/V				
Fast Scan setpoint Sens.:	1.000 V/V	E Sens.:	1.000 V/V				
I cell Sens.:	100.0 μA/V	Friction Sens.:	1.000				
Amplitude Sens.:	1.000	TM Deflection Sens.:	1.000				
Phase Sens.:	1.000	Frequency Sens.:	1.000				
X0 Sens.:	1.000	Y0 Sens.:	1.000				
×1 Sens.:	1.000	Y1 Sens.:	1.000				
Aux amplitude Sens.:	1.000	Aux phase Sens.:	1.000				
Aux frequency Sens.:	1.000	Thermal Sens.:	1.000				
MSM amplitude Sens.:	1.000	MSM phase Sens.:	1.000				
High Frequency Sens.:	1.000	Resistance Sens.:	1.000				
PR amplitude Sens.:	1.000	PR phase Sens.:	1.000				
PR Data Sens.:	1.000	PR X Sens.:	1.000				
PR Y Sens.:	1.000	dC/dV Amp Sens.:	1.000				
dC/dV Phase Sens.:	1.000	Feedback Bias Sens.:	1.000				
Fast Z Sens.:	1.000	Fast RMS Sens.:	1.000				
Fast Deflection Sens.:	1.000	TR Amplitude Sens.:	1.000				
TR Phase Sens.:	1.000	TR Vert Defl Sens.:	1.000				
	<u>0</u> k <u>P</u> rint	<u>C</u> ancel	Qk Print Cancel				

Figure 390.4b Setting the Current Range in NanoScope v. 5

Detector Calibration	Serial Number: EV ?
Deflection Sens.	1.000
Ebias Sens.	1000 mV/V
E Sens.	1.000 V/V
I cell Sens.	100.0 µA/V
Friction Sens.	1.000
Amplitude Sens.	1.000
Aux A Sens.	1.000
Aux B Sens.	1.000
Aux C Sens.	1.000
Aux D Sens.	1.000
ОК Са	ncel <u>P</u> rint

Figure 390.4c Setting the Current Range in NanoScope v. 6

Figure 390.4d Setting the Current Range in NanoScope v. 7

Deflection Sensitivity	1.000	Fast Z Analog Sens.	1.000
Ebias Sens.	1000 mV/V	Fast Z Sens.	1.000
Fast Scan Setpoint Sens.		Fast RMS Sens.	1.000
ZGsens Sens.	10.00 nm/V	Fast Deflection Analog Sens.	1.000
Z sensor Sens.	1000 nm/V		1.000
FUNA Current Sens.	10.00 pA/V	Xsensor Sens.	1.000
OC sample bias Sens.	1.000 V/V	Ysensor Sens.	1.000
DC test bias Sens.	1.000 V/V	Frequency Sens.	1.000
E Sensitivity	1.000 V/V	Potential Sens.	1.000
	100.0 μA/V	TR Amplitude Sens.	1.000
Amplitude Sens.	1.000		1.000
Amplitude Error Sens.	1.000	TR Phase Sens.	1.000
hase Sens.	1.000	Amplitude2 Sens.	1.000
Phase Error Sens.	1.000	Amplitude 2 Sens.	1.000
Friction Sens.	1.000	dC/dV Amplitude Sens.	1.000
FM Deflection Sens.	1.000	dC/dV Amplitude Error Sens.	1.000
TM Deflection Error Sens.	1.000	dC/dVISens.	1.000
nphase Sens.	1.000	dC/dV Q Sens.	1.000
Quadrature Sens.	1.000	dC/dV Phase Sens.	1.000
Raw Deflection Sens.	1.000	Feedback Bias Sens.	1.000
Raw Deflection Gain Sens	. 1.000	Resistance (Ohms) Sens.	1.000
Counter 1 Sens.	1.000	Resistance (V) Sens.	1.000
Counter 2 Sens.	1.000	Input1 Sens.	1.000
Freq. 1 Sens.	1.000	Input2 Sens.	1.000
Freq. 2 Sens.	1.000	Input3 Sens.	1.000

- LOCAL/REMOTE:
 - LOCAL: All controls are operated from the front panel push-buttons.
 - **REMOTE**: Enables software control of the Universal Bipotentiostat.

390.4.2 Potential and Bias Modulation

You may modulate the voltage to the working electrode by connecting a BNC cable between the POTENTIAL MOD connector on the back panel of the Universal Bipotentiostat, shown in Figure 3e, and an oscillator that you supply.

The bias between an STM tip and sample may also be modulated by using the BIAS MOD input, shown in Figure 3e.

Note: The maximum voltage input to either connector is $\pm 10V$ while the maximum frequency is 10kHz.

390.4.3 NanoScope Software Version 5 Operation

Other than the changes listed below, software usage for the Universal Bipotentiostat is identical to other Bruker Potentiostats.

Software and Firmware

The Universal Bipotentiostat requires NanoScope software version V5.30b25, V5.30r3 or later. Serial communication between the Universal Bipotentiostat and the computer is enabled with the above referenced NanoScope software together with Rabbit microprocessor firmware version 3.01 or later. Refer to **Appendix B: Upgrading the Universal Bipotentiostat Firmware:** Page 37 for instructions on upgrading the Universal Bipotentiostat firmware.

Power-up Delay

Thirty seconds are required for the potentiostat to warm-up and auto-zero its graphic meter. During this period of time, the potentiostat is not responsive to any operation, front panel or serial communication.

Default Mode

The potentiostat defaults to **REMOTE** to enable serial communication. Pushing the **REMOTE**/ LOCAL button switches the potentiostat to LOCAL to enable front panel operation.

Operation

Software Setup

The Universal potentiostat must be added to your equipment list using **MICROSCOPE SELECT**, shown in Figure 4e. For NanoScope IV(a) or NanoScope IIIa + ADC5 controllers, click **EDIT** to open the **Equipment** window and select **UNIVERSAL** for the **EC POT**. For other controllers, select **MMECPOT**.

 Microscope Select 	Equipment - envirov.eqp			
EC MultiMode	<u>0</u> k	Description:	Quadrexed EC EnviroScope	<u>0</u> k
ECSTM	<u>E</u> dit	Controller:	IIIA + A/D	Scanner
MultiMode		Microscope:	EnviroScope	
Quadrexed EC EnviroScope	New	Extender:	Quadrex	<u>C</u> ancel
Quadrexed EnviroScope	Delete			
STM		Sensor:	None	
Torsion D3100	<u>C</u> ancel	EC Pot:	Universal	Advanced
Torsion MultiMode 🔸]	Vision:	FrameGrabber	Serial

Figure 390.4e Microscope Select for the Universal Potentiostat

Begin configuring the serial port of the PC that will be used to communicate with the Universal Bipotentiostat by clicking **SERIAL...**, shown in Figure 4f, to open the **Serial Port Configuration** window, shown in Figure 4g.

-	Equipment - mmvec.eqp)
Description:	Quadrexed EC MultiMode	<u>0</u> k
Controller:	IIIA + A/D	Scanner
Microscope:	MultiMode	 Cancel
Extender:	Quadrex	
Sensor:	None	
EC Pot:	Universal	Advanced
Vision:	None	Serial

Figure 390.4f Serial Port Selection

Select the port to which the Universal Bipotentiostat is connected and click EDIT to open the Edit Port Setup window, shown in Figure 4g. Select UNIVERSAL EC for the EQUIPMENT TYPE. Click OK to close the Edit Port Setup window, DONE to close the Serial Port Configuration window and OK to close the Equipment window. Click OK to close the Microscope Select window and open the NanoScope real-time window.

9600

N

8

1

iversal EC

<u>O</u>k

<u>C</u>ancel

Figure 390 4g	Serial Port Configuration
Figure 370.42	Schall for Comiguation

	Serial Port Configura	tion	-		EditP
OM 1	Track Ball	Edit	СОМ	1 4 Baud:	
)M 2	Serial Stage	View	СОМ	4 4 Parity:	Г
)M 3	Illuminator	VIEW	СОМ	4 Word Size:	
DM 4	NOT USED	Done		4 4 Stop Bits:	
				·	
			COV	4 4 Equipment Ty	vpe:

If serial communication between the PC and the Universal Bipotentiostat is inactive, an error message, shown in Figure 4h, will appear.

Figure 390.4h Serial Communication Error Window

Error
Check Serial Connection to or Remote Light on Univ EC Potentiostat

Universal Potentiostat Panel

The Universal Potentiostat panel, shown in Figure 4i, should be visible in the Real-Time window.

 Universal Potentiostat 						
Potentiostat Mode:	Potentiostat					
Cell Selection:	Dummy					
Cell (On/Off):	On					
Current Gain:	100 nA/V					
Current Filter:	None					
Reset Potentiostat						

Figure 390.4i Universal Potentiostat panel

To make the Universal Potentiostat panel visible, click PANELS (on the menu bar) > UNIVEC, shown in Figure 4j.

ture Microscop	e P <u>o</u> tential	Panels <u>R</u> e	cipe <u>H</u> elp					
		<u>S</u> can Feedback						
- Universal	Potentiostat	 Other	- v	oltam	- Ten	nporal	- Ramp	ing Controls
Potentiostat Mode:	Potentiostat	<u>O</u> mer <u>R</u> amping	Voltammogram:	Display	Temporal graph:	Display	E:	0.00 mV
Cell Selection:	Dummy	<u>I.a</u> mping ⊻oltam	Elec Area:	0.500 cm²	Temporal function:	Current	I Cell:	0.00 nA
Cell [On/Off]:	On	<u>T</u> emporal	Voltam function:	Current	I range:	1.000 µA	Ramp rate:	10.0 mV/s
Current Gain:	100 nA/V	<u>U</u> nivEC	I range:	1.000 μA	Volt range:	2.00 V	Ramp max:	100 mV
Current Filter:	None		Volt max:	1.00 V	Time range:	10.0 s	Ramp min:	-100 mV
Reset Pote	entiostat		Volt min:	-1.00 V	Res	et	Sample rate:	15.0 Hz
			Re	eset				

Figure 390.4j Electrochemistry panels

Functions

- **RESET POTENTIOSTAT:** The NanoScope software will configure the Universal Bipotentiostat for the selected NanoScope controller, Extender, Microscope, and Microscope mode during start-up. However, if the software is started while the controller is powered off, or if the Universal Potentiostat is in LOCAL mode, you will need to click **RESET POTENTIOSTAT** after powering up the controller. You will also need to click **RESET POTENTIOSTAT** after switching the Universal Bipotentiostat from LOCAL to **REMOTE** mode. This action checks serial communication, configures the potentiostat, auto-zeroes the graphic meter readings and synchronizes front panel settings to NanoScope software.
- POTENTIOSTAT MODE:
 - **GALVANOSTAT**: Sets the Universal Bipotentiostat to the **GALVANOSTATIC** mode. In other words, it controls current.
 - **POTENTIOSTAT**: Sets the Universal Bipotentiostat to the **POTENTIOSTATIC** mode. In other words, it controls voltage.
- CELL SELECTION:
 - NORMAL: Connects the electronics in the Universal Bipotentiostat to the electrochemical cell.
 - **DUMMY**: Connects the working electrode, counter electrode and reference electrode to the internal dummy cell made of three 10kΩ resistors. This is used for diagnostic purposes.
- CELL [ON/OFF]:
 - CELL ON: Turns the cell on, i.e. connects the counter electrode to the cell.
 - **CELL OFF**: Turns the cell off, i.e. disconnects the counter electrode from the cell and puts the cell in an open circuit condition. The dummy cell's potential will be 0V while the electrochemical cell's potential will be the open circuit potential.

- CURRENT GAIN: This changes the input current sensitivity and automatically scales the Voltam and Temporal plots.
- CURRENT FILTER: This sets up the low pass filter to remove noise on current. It is observed that you may need to try different settings a few times to keep the noise down.

Meter Screen

While running electrochemistry on an EnviroScope, Dimension or BioScope, the display monitor is used for voltage and current information. To display AFM signals, click View -> METER SCREEN, shown in Figure 4k.

Note: METER SCREEN is not available on MultiMode systems.

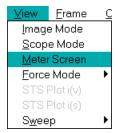


Figure 390.4k Enabling the Meter Screen

390.4.4 NanoScope Software Version 6 Operation

Other than the changes listed below, software usage for the Universal Bipotentiostat is identical to other Bruker Potentiostats.

The Universal Bipotentiostat requires NanoScope software version 6.13 or later.

The Universal potentiostat must be added to your equipment list using TOOLS > SELECT MICROSCOPE..., shown in Figure 4e. For NanoScope IV or NanoScope IIIa + ADC5 controllers, click EDIT to open the Equipment window. and select UNIVERSAL for the EC POT. For other controllers, select MMECPOT.

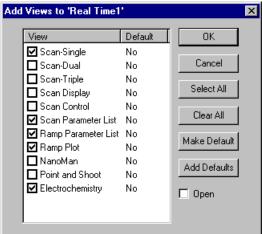

Microscope Select EC EnviroScope EC MultiMode EC STM MultiMode SECPM	<u>QK</u> <u>E</u> dit <u>D</u> elete <u>C</u> ancel	Equipment - unkec.eq Description Controller Microscope Extender EC Pot Vision	EC EnviroScope IIIA + A/D EnviroScope None Universal None
		<u>S</u> canner	Serial <u>A</u> dvanced

Figure 390.41 Microscope Select for the Universal Potentiostat

Note: Serial communication between the computer and the Universal Bipotentiostat is not supported in NanoScope version 6 software. Use NanoScope version 5.30, or later, for this function.

Add **ELECTROCHEMISTRY** to your workspace (see Figure 4m).

Figure 390.4m ELECTROCHEMISTRY added to Workspace

This will add EC parameters to the Scan Parameter List, shown in Figure 4n.

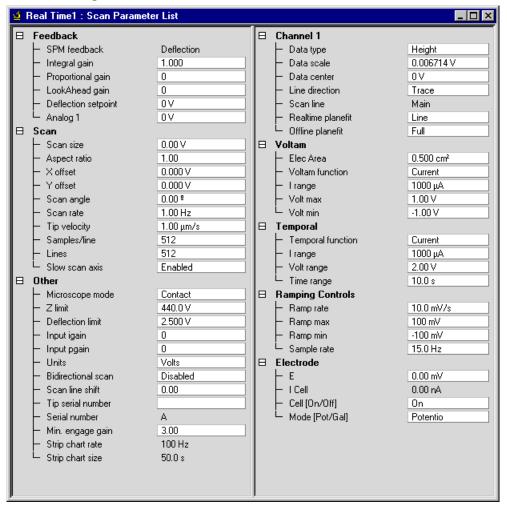


Figure 390.4n EC Parameters added to the Scan Parameter List

These parameters are also available in the Electrochemistry window, available by clicking the **EC** workspace (see Figure 40). Voltage and current information is also available in this window. The **EC** and **Channels** tabs, shown in Figure 4p and Figure 4q respectively, provide an alternate means to adjust EC parameters.

💆 Real Time1 : Electrochemistry		
➡ Voltam ↓ Irange 1000 µA ↓ Irange 1000 µA ↓ Volt min -1.00 V ↓ Volt max 1.00 V ↓ Ramp rate 10.0 mV/s ↓ Sample rate 15.0 Hz ➡ Temporal Current ↓ Irange 1000 µA ↓ Volt range 2.00 V ↓ 0.00 nA E ↓ Time range 10.0 s	Reset	

Figure 390.40 Real Time Electrochemistry Window

Main Scan	Channels FeedBa	ack Other EC
 B Ramping Co A Ramp rat Ramp mit Ramp mit Sample r Electrode E I Cell Cell [On/ Mode [Point 	e ax n ate Off]	10.0 mV/s 100 mV -100 mV 15.0 Hz 0.00 mV 0.00 nA On Potentio

Figure 390.4p EC Tab

Figure 390.4q EC Parameters in Channels Tab

Main Scan Channels FeedBa	ack Other EC
Data scale Data center Data cente	0.006714∨ ▲ 0 ∨ Trace Main Line Full 0.500 cm ² Current 1000 µA 1.00 ∨ -1.00 ∨ Current 1000 µA 1.00 ∨ 1.00 ∨

390.4.5 NanoScope Software Version 7 Operation

Other than the changes listed below, software usage for the Universal Bipotentiostat is identical to other Bruker Potentiostats.

Operation

Software and Firmware

The Universal Bipotentiostat requires NanoScope software version 7.20 or later. Serial communication between the Universal Bipotentiostat and the computer is enabled with the above referenced NanoScope software together with Rabbit microprocessor firmware version 3.02 or later. Refer to **Appendix B: Upgrading the Universal Bipotentiostat Firmware:** Page 37 for instructions on upgrading the Universal Bipotentiostat firmware.

Power-up Delay

Thirty seconds are required for the potentiostat to warm-up and auto-zero its graphic meter. During this period of time, the potentiostat is not responsive to any operation, front panel or serial communication.

Default Mode

The potentiostat defaults to **REMOTE** to enable serial communication. Pushing the **REMOTE**/ LOCAL button switches the potentiostat to LOCAL to enable front panel operation.

Software Setup

The Universal potentiostat must be added to your equipment list using **TOOLS > SELECT MICROSCOPE...**, shown in Figure 4r. Click **EDIT** to open the Equipment window, shown in Figure 4r, and select **UNIVERSAL** for the **EC POT**.

Microscope Select	? 🗙	Equipment - mmec	.eqp ? 🔀
BioScope BioScope II Dimension V EC MultiMode V EnviroScope Torsion Dimension 5000	<u> </u>	Description Controller Microscope Sensor EC Pot Vision	EC MultiMode V V MultiMode V None Universal Sasic MMECPOT Universal
		<u>S</u> canner	Serial <u>A</u> dvanced

Figure 390.4r Microscope Select for the Universal Potentiostat

Begin by configuring the serial port of the PC that will be used to communicate with the Universal Bipotentiostat by clicking **SERIAL**..., shown in Figure 4r, to open the **Serial Port Configuration** window, shown in Figure 4s.

Select the port to which the Universal Bipotentiostat is connected and click EDIT to open the Edit Port Setup window, shown in Figure 4s. Select POTENTIOSTAT for the EQUIPMENT TYPE. Click OK to close the Edit Port Setup window, DONE to close the Serial Port Configuration window and OK to close the Equipment window. Click OK to close the Microscope Select window and open the NanoScope real-time window.

Serial Port Configuration	? 🗙	
		Edit Port Setup
COM 1 Track Ball COM 2 Serial Stage COM 3 Temp Controller	<u>E</u> dit	COM 4 Equipment Type: Potentiostat
COM 4 Potentiostat	⊻iew	COM 4 Baud: 9600
	Done	COM 4 Parity: N
		COM 4 Word Size: 8
		COM 4 Stop Bits: 1
		OK Cancel

Figure 390.4s Serial Port Configuration

If serial communication between the PC and the Universal Bipotentiostat is inactive, an error message will appear.

Add **ELECTROCHEMISTRY** to your workspace (see Figure 4t).

Ado	l Views to 'Real Time	:1'		
	View	Default	^	ОК
	☑ Scan-Single	No		
	🗹 Scan Display	No		Cancel
	🗹 Scan Control	No		
	🗹 Scan Parameter List	No		Select All
	🗖 Generic Lock-In	No		
	🗹 Ramp Parameter List	No		Clear All
	🗖 Ramp Plot	No		Make Default
	🗖 NanoMan	No		
	🗖 Thermal Tune	No		Add Defaults
	Point and Shoot	No		Add Deradits
	Electrochemistry	No		🗖 Open
	Force Volume	No	~	, opon
	<	>		

Figure 390.4t ELECTROCHEMISTRY added to Workspace

单 Real Time1 : Scan Parameter List Feedback ⊟ Channel 1 SPM Feedback Log Data Type Height Current Setpoint 12.29 V Data Scale 0.006714 V Integral Gain Data Center 10.00 0 V 0 Proportional Gain Line Direction Trace 0 \square Scan Scan Line Main Scan Size 0.000008 V Realtime Plane Fit Line Offline Plane Fit Aspect Ratio 1.00 Full X Offset 0.000 V 🖯 Voltam Y Offset 0.000 V Volt function Е - Scan Angle ° 00.0 Elec Area 0.500 cm² - Scan Rate Voltam Function 0.977 Hz Current - Tip Velocity 1.00 µm/s I Range 1229 µA Samples/Line Volt Maximum 512 1.23 V Volt Minimum Lines 512 -1.23 V Slow Scan Axis Enabled E Temporal \square Limits Temporal Function Current 🖵 Z Limit 440.0 V I Range 1229 µA ⊟ Other Volt Range 2.00 V Microscope Mode Time range STM 10.0 s □ Ramping Controls Units Volts Bidirectional Scan Disabled - E 0.00 mV Tip Serial Number Etip 100 mV Serial Number xxxxJ Ebias 100 mV Strip Chart Rate 100 Hz Cell Current 0.00 nA Output 1 Data Type Off Ramp Rate 10.0 mV/s Ramp max Output 2 Data Type Off 100 mV Ramp min -100 mV Tip reference Work Ramp electrode Work Sample Rate 15.0 Hz Detentiostat Potentiostat Mode Potentiostat Cell Selection Dummy Cell [On/Off] Off Current Range 1 mA Current Filter None

Figure 390.4u EC Parameters added to the Scan Parameter List

This will add EC parameters to the Scan Parameter List, shown in Figure 4u.

These parameters are also available in the Electrochemistry window, available by clicking the **EC** workspace (see Figure 4v). Voltage and current information is also available in this window. The **EC** and **Channels** tabs, shown in Figure 4w and Figure 4q respectively, provide an alternate means to adjust EC parameters.

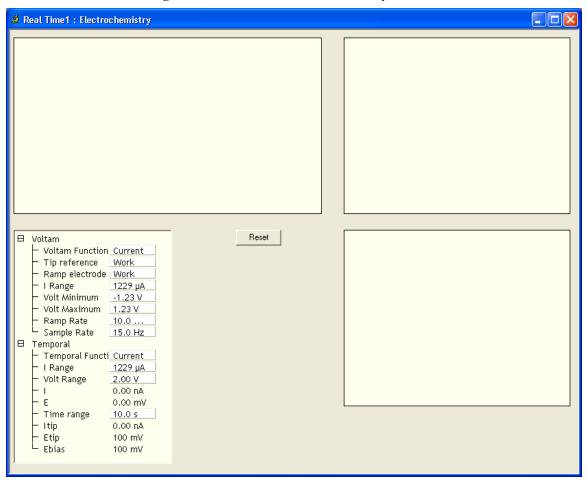
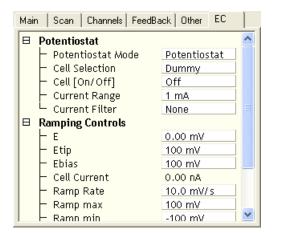
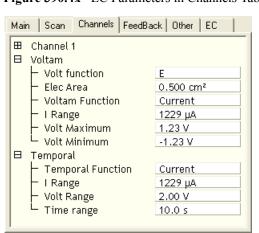
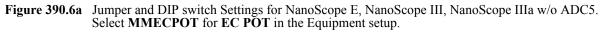



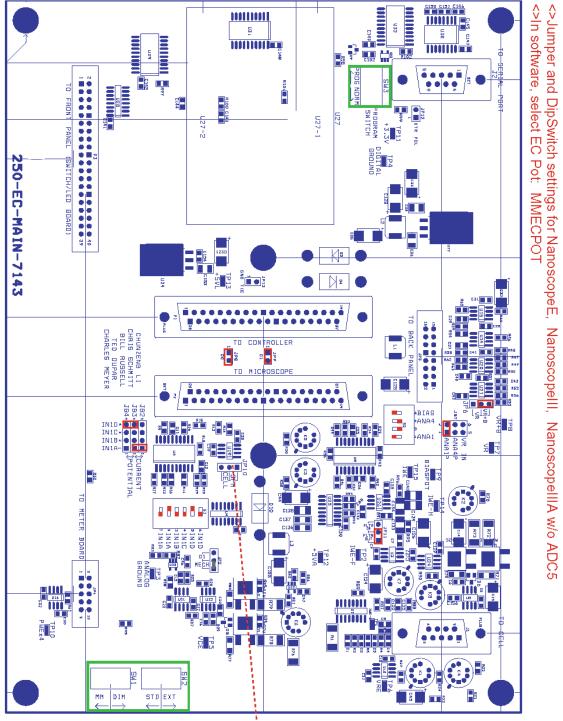
Figure 390.4v Real Time Electrochemistry Window

Figure 390.4w EC Tab

🕂 Current Range	1 mA
🖵 Current Filter	None
🖯 Ramping Controls	
<u>—</u> Е	0.00 mV
- Etip	100 mV
– Ebias	100 mV
– Cell Current	0.00 nA
– Ramp Rate	10.0 mV/s
 Ramp max 	100 mV
- Ramp min	-100 mV
 Tip reference 	Work
– Ramp electrode	Work
🖵 Sample Rate	15.0 Hz

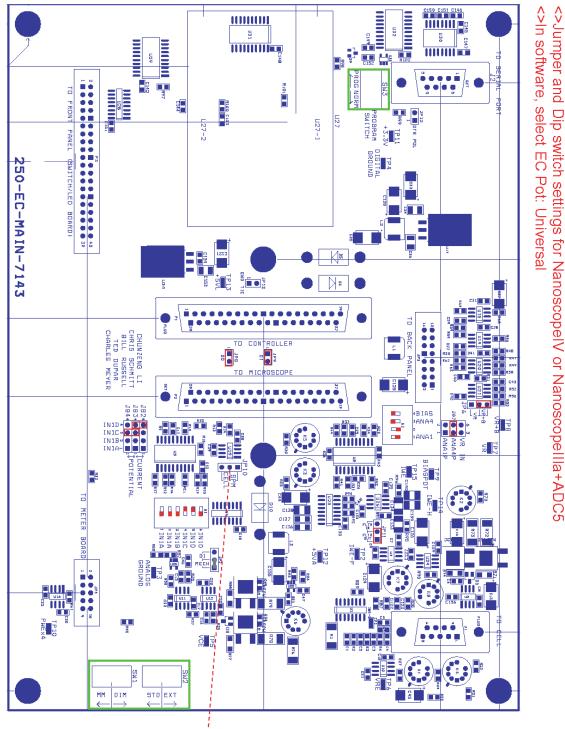
Maintenance


Figure 390.4x EC Parameters in Channels Tab

390.5 Maintenance

The Universal Bipotentiostat does not require special maintenance.


390.6 Appendix A: Jumper and Dip Switch Settings

No jumper or jumper wire

Figure 390.6b Jumper and DIP switch Settings for NanoScope IV(a), including NS IV(a) through the emulation port, or NanoScope IIIa + ADC5. Select UNIVERSAL for EC POT in the Equipment setup.

No Jumper or Jumper Wire

390.7 Appendix B: Upgrading the Universal Bipotentiostat Firmware

If you need to upgrade the firmware of your Universal Bipotentiostat, the files, shown in Figure 7a, will be sent to you.

Sturec Eile Edit ⊻iew H	elp			
🖻 Rfu-ec		- 🗈 🚈 🕽	(BB) 🗠 🗡 🖻	
Name	Size	Туре	Modified	Attributes
Coldload	1KB	BIN File	5/23/02 1:39 PM	A
ECRABBIT 3_01	41KB	BIN File	1/24/05 10:05 AM	А
🐻 flash	9KB	Configuration Settin	8/13/02 8:19 AM	А
🔊 pilot	30KB	BIN File	9/26/02 10:42 AM	А
Rfu	662KB	Application	11/20/02 3:13 PM	А
) pilot 前 Rfu 前 Rfu 前 Rfu	ЗКВ	Icon	7/21/00 1:32 PM	A
6 object(s)	742K	в		1.

Figure 390.7a Rabbit Programming Files

To upgrade the firmware:

- 1. Copy the files to the computer that runs the NanoScope software.
- 2. Create a shortcut to Rfu.exe on the desktop of the computer.

WARNING:	Voltages supplied to and within certain areas of the system are potentially dangerous and can cause injury to personnel. Power- down all components and unplug from power sources before doing any electrical servicing. If you are not capable of or comfortable performing this upgrade, contact Bruker Service Personnel. This warning supersedes the warning on Page 7 (top) for this upgrade only.
----------	--

- 3. Power off the NanoScope controller and disconnect it from the mains.
- 4. Connect the Universal Bipotentiostat to the controller and disconnect the Microscope from the Bipotentiostat.
- 5. Plug the COM 1 Serial Cable on the back of the computer to the Serial Port Connection on the Universal Bipotentiostat.
- 6. Open the Bipotentiostat by loosening the 4 screws on the corners on the bottom of the Universal Bipotentiostat.

7. Locate SW3 on the main board, and switch it to **PROG**. See Figure 7b.

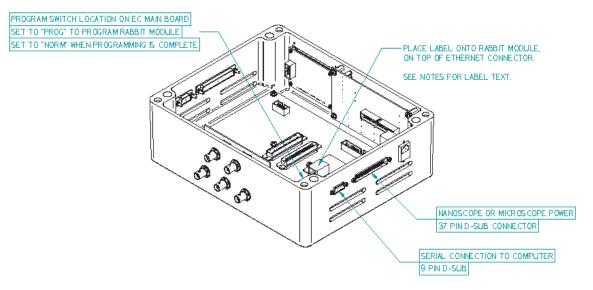
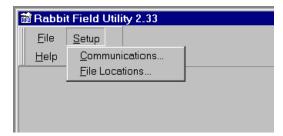
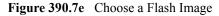
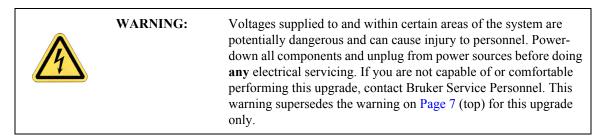



Figure 390.7b Universal Bipotentiostat Firmware Upgrade

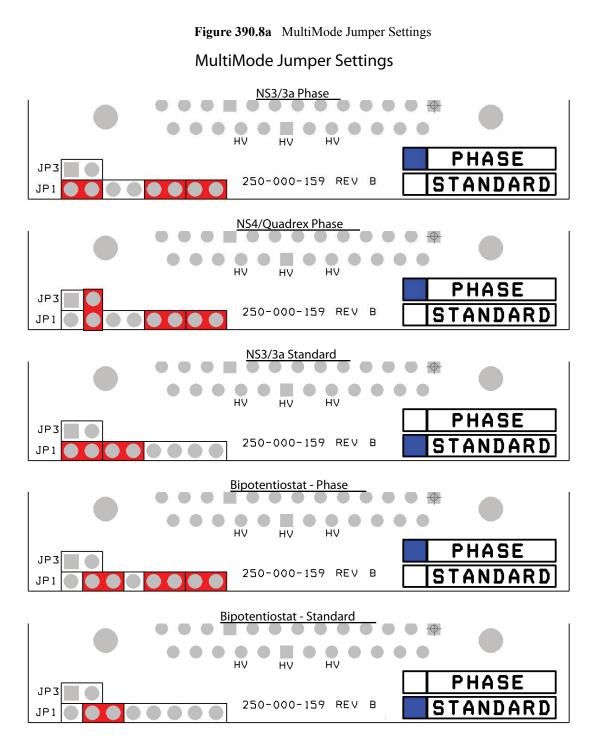
- 8. Close the Bipotentiostat by tightening the 4 screws on the corners at the bottom of the box.
- 9. Reconnect the power cord to the NanoScope controller and power it up.
- 10. From the Desktop, run the Rabbit Field Utility (Rfu.exe) software. Use HELP when needed.
- 11. CLICK SETUP COMMUNICATIONS... > FILE LOCATIONS..., shown in Figure 7c.


Figure 390.7c SETUP COMMUNICATIONS and FILE LOCATIONS

12. Select FILE > LOAD FLASH IMAGE, shown in Figure 7d, and browse to find: \\EC RABBIT 3_01.bin (or the current binary file, EC RABBIT X_XX.bin). See Figure 7e.


Figure 390.7d Load Flash Image

📸 Rabbi	t Field Utility 2.33	
<u> </u>	Setup	
Load	Flash Image	
E <u>x</u> it		


Choose Flash Image)		х
Flash Image			
File Location : ECP	ABBIT 3_01.bin	v	
ОК	Cancel	Help	

13. Press **OK** to send the program.

- 14. Power off the NanoScope controller and disconnect it from the mains.
- 15. Open the Bipotentiostat by loosening the 4 screws on the corners on the bottom of the Universal Bipotentiostat.
- 16. Switch SW3 to NORM.
- 17. Add a small circular label with text noting the firmware version, e.g. EC 3_01 (or current revision EC X.XX).
- 18. Close the Bipotentiostat by tightening the 4 screws on the corners at the bottom of the box.
- 19. Connect the Extender (if used) and Microscope to the Universal Bipotentiostat as described in **Connecting the Universal Bipotentiostat:** Page 8.
- 20. Power up the controller and run the NanoScope software to operate the ECSPM system.

390.8 MultiMode Jumper Settings

WARRANTY INFORMATION

This product is covered by the terms of the Bruker standard warranty as in effect on the date of shipment and as reflected on Bruker's Order Acknowledgement and Quote. While a summary of the warranty statement is provided below, please refer to the Order Acknowledgement or Quote for a complete statement of the applicable warranty provisions. In addition, a copy of these warranty terms may be obtained by contacting Bruker.

WARRANTY. Seller warrants to the original Buyer that new equipment will be free of defects in material and workmanship for a period of one year commencing (x) on final acceptance or (y) 90 days from shipping, whichever occurs first. This warranty covers the cost of parts and labor (including, where applicable, field service labor and travel required to restore the equipment to normal operation).

Seller warrants to the original Buyer that replacement parts will be new or of equal functional quality and warranted for the remaining portion of the original warranty or 90 days, whichever is longer.

Seller warrants to the original Buyer that software will perform in substantial compliance with the written materials accompanying the software. Seller does not warrant uninterrupted or error-free operation.

Seller's obligation under these warranties is limited to repairing or replacing at Seller's option defective non-expendable parts or software. These services will be performed, at Seller's option, at either Seller's facility or Buyer's business location. For repairs performed at Seller's facility, Buyer must contact Seller in advance for authorization to return equipment and must follow Seller's shipping instructions. Freight charges and shipments to Seller are Buyer's responsibility. Seller will return the equipment to Buyer at Seller's expense. All parts used in making warranty repairs will be new or of equal functional quality. The warranty obligation of Seller shall not extend to defects that do not impair service or to provide warranty service beyond normal business hours, Monday through Friday (excluding Seller holidays). No claim will be allowed for any defect unless Seller shall have received notice of the defect within thirty days following its discovery by Buyer. Also, no claim will be allowed for equipment, Seller must receive notice of any defect which Buyer could have discovered by prompt inspection. Products shall be considered accepted 30 days following (a) installation, if Seller performs installation, or (b) shipment; unless written notice of rejection is provided to Seller within such 30-day period.

Expendable items, including, but not limited to, lamps, pilot lights, filaments, fuses, mechanical pump belts, V-belts, wafer transport belts, pump fluids, O-rings and seals ARE SPECIFICALLY EXCLUDED FROM THE FOREGOING WARRAN-TIES AND ARE NOT WARRANTED. All used equipment is sold 'AS IS, WHERE IS,' WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED.

Seller assumes no liability under the above warranties for equipment or system failures resulting from (1) abuse, misuse, modification or mishandling; (2) damage due to forces external to the machine including, but not limited to, acts of God, flooding, power surges, power failures, defective electrical work, transportation, foreign equipment/attachments or Buyer-supplied replacement parts or utilities or services such as gas; (3) improper operation or maintenance or (4) failure to perform preventive maintenance in accordance with Seller's recommendations (including keeping an accurate log of preventive maintenance). In addition, this warranty does not apply if any equipment or part has been modified without the written permission of Seller or if any Seller serial number has been removed or defaced.

No one is authorized to extend or alter these warranties on Seller's behalf without the written authorization of Seller.

THE ABOVE WARRANTIES ARE EXPRESSLY IN LIEU OF ANY OTHER EXPRESS OR IMPLIED WARRANTIES (INCLUDING THE WARRANTY OF MERCHANTABILITY), AND OF ANY OTHER OBLIGATION ON THE PART OF SELLER. SELLER DOES NOT WAR-RANT THAT ANY EQUIPMENT OR SYSTEM CAN BE USED FOR ANY PARTICULAR PURPOSE OR WITH ANY PARTICULAR PROCESS OTHER THAN THAT COVERED BY THE APPLICABLE PUBLISHED SPECIFICATIONS.

NO CONSEQUENTIAL DAMAGES. LIMITATION OF LIABILITY. Seller shall not be liable for consequential damages, for anticipated or lost profits, incidental, indirect, special or punitive damages, loss of time, loss of use, or other losses, even if advised of the possibility of such damages, incurred by Buyer or any third party in connection with the equipment or services provided by Seller. In no event will Seller's liability in connection with the equipment or services provided by Seller exceed the amounts paid to Seller by Buyer hereunder.