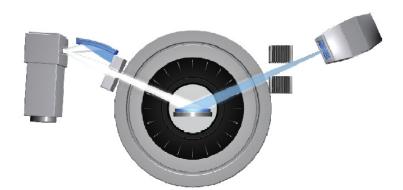

# The D8 Advance Configuration with Twin-Twin optics and LynxEye detector

The described configuration is for a D8 Advance DaVinci system in theta/theta geometry with Twin-Twin optics, rotation stage and LynxEye XE detector. The individual components are labelled in the image below.

The rotation stage can be exchanged easily for a capillary stage, sample changers, a compact cradle for texture measurements, a compact xyz stage for micro diffraction or non-ambient stages without affecting the alignment of the optical components.



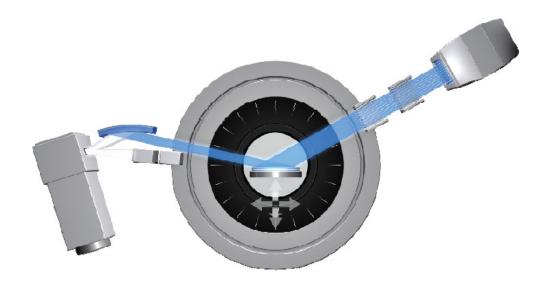

The version of the Diffrac.Measurement software in the screenshots is 3.3.47

The example measurements that are shown were collected with a 2 year old tube in the Application lab, slightly higher intensities may be observed on newer systems.

The described alignment steps are essentially an illustrated and annotated version of the service alignment document for the TWIN-TWIN configuration.

## Modes of Operation for the TWIN-TWIN configuration

#### **Bragg-Brentano Geometry**



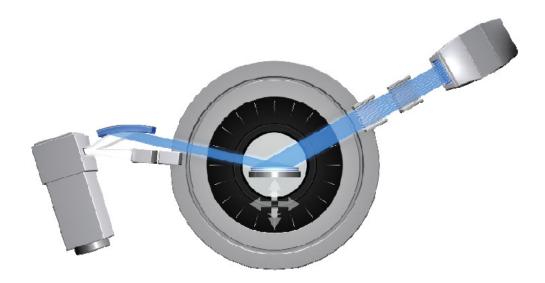

| Primary Twin Optic     | Set to Motorized Slit: Opening Degree (or slit width) for fixed slits |
|------------------------|-----------------------------------------------------------------------|
|                        | Set to Motorized Slit: Fixed Sample Illumination for variable slits   |
| Radiation Safety slit  | Empty or 6mm (small slits will block the incident beam)               |
| Primary Axial Soller   | 2.5° (4° for more intensity)                                          |
| Secondary Twin Optic   | Opened all the way (2.6°) or completely removed for more intensity    |
| Slit Mount             | Empty                                                                 |
| Secondary Axial Soller | 2.5° (4° for more intensity)                                          |
| Filter                 | Ni                                                                    |
| LynxEye detector       | 1D mode (set to 2.95°) for start angles > 3 °                         |

This configuration is the standard setup for powder samples that can be prepared in flat plate geometry. Any deviation of the sample surface from the correct reference height, either through sloppy sample preparation or sample penetration into low density samples will lead to a shift of diffraction peaks.

Advantages: Good resolution and intensity and good crystallite statistics, if a large sample size can be illuminated

#### **Grazing Incidence Diffraction (GID)**




| Primary Twin Optic     | Set to Goebel Mirror                                     |
|------------------------|----------------------------------------------------------|
| Radiation Safety slit  | 1mm for full beam 0.2mm                                  |
| Primary Axial Soller   | 2.5°                                                     |
| Secondary Twin Optic   | Set to Soller 0.2°                                       |
| Slit Mount             | None                                                     |
| Secondary Axial Soller | 2.5° or removed for more intensity                       |
| Filter                 | None                                                     |
| LynxEye detector       | 0D mode Detector slit set to 14 mm                       |
| Scan Type              | 2Theta scan with theta angle set to a low incident angle |

This configuration is used primarily for polycrystalline thin films between a few nanometer and approximately 1 micron thickness for inorganic films. Thicker films of inorganic materials are essentially infinitely thick for Cu radiation and can usually be measured faster and with better angular resolution in Bragg-Brentano geometry

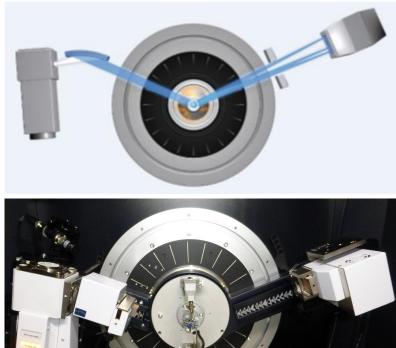
**Advantages:** By using a low incident angle the whole sample is illuminated and the beam penetration is low, leading to fewer interferences with substrate peaks

**Disadvantages:** Slower measurement because the LynxEye detector is used in 0d mode. Angular resolution is limited by divergence of equatorial Soller Slits (expected peak width approx. 0.2° FWHM)

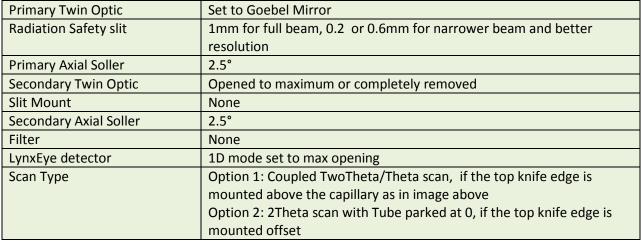
#### **Irregular Shaped Samples**



| Primary Twin Optic     | Set to Goebel Mirror                              |
|------------------------|---------------------------------------------------|
| Radiation Safety slit  | 1mm for full beam, 0.2 or 0.6mm for narrower beam |
| Primary Axial Soller   | 2.5°                                              |
| Secondary Twin Optic   | Set to Soller 0.2°                                |
| Slit Mount             | None                                              |
| Secondary Axial Soller | 2.5° or removed for more intensity                |
| Filter                 | None                                              |
| LynxEye detector       | 0D mode Detector slit set to 14 mm                |
| Scan Type              | Coupled TwoTheta/Theta scan                       |


This configuration is used primarily for irregular shaped polycrystalline samples that cannot be ground to powders and that do not have a flat surface to measure in Bragg-Brentano geometry, e.g. rocks, machine parts, museum artifacts, forensic evidence, etc

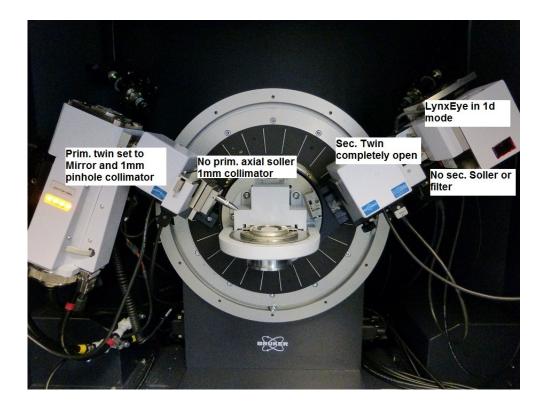
It is identical to the GID configuration but coupled TwoTheta/Theta scans are used. Several mm height differences can be measured without shifts in peak positions. For very low density samples this configuration can also be advantageous to get sharper diffraction peaks than with Bragg-Brentano without the peak asymmetry caused by sample penetration.


Advantages: non-destructive technique that can be used for phase identification.

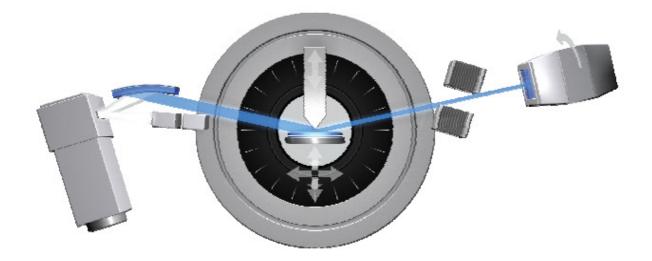
**Disadvantages:** Slower measurement because the LynxEye detector is used in 0d mode. Angular resolution is limited by divergence of equatorial Soller Slits (expected peak width approx. 0.2° FWHM).

#### **Capillary Measurements**







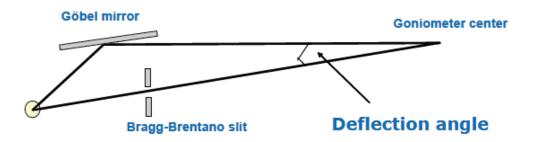


Two knife edges come with the capillary stage, which are both mounted offset from the goniometer center above and below the capillary. This makes it easier to mount and demount capillaries, but it will cut the incident beam incident beam intensity, if coupled twotheta/theta scans are used. For scan ranges up to approx. 70 degrees, this issue can be avoided by positioning the tube at 0 degrees and using 2thetascans. For ranges up to higher angles the spacer of the upper knife edge can be removed so that the beam knife is directly above the capillary (see image above). In this configuration, normal locked coupled scan can be used up to high angles without cutting the incident beam intensity.

### **Micro Diffraction or Texture measurements**

| Primary Twin Optic            | Set to Goebel Mirror                             |
|-------------------------------|--------------------------------------------------|
| Radiation Safety slit         | Pinhole collimator 1mm or 0.5 mm, larger for     |
| Primary Axial Soller          | Removed                                          |
| Collimator mount with pinhole | Available Options: 2mm, 1mm, 0,5mm, 0.3mm, 0.1mm |
| collimators                   |                                                  |
| Secondary Twin Optic          | Opened to maximum or completely removed          |
| Slit Mount                    | None                                             |
| Secondary Axial Soller        | None                                             |
| Filter                        | None                                             |
| LynxEye detector              | 1D mode set to max opening                       |
| Scan Type                     | Coupled TwoTheta/Theta scan                      |



## **Reflectometry (XRR)**




| Primary Twin Optic     | Set to Goebel Mirror                                                 |
|------------------------|----------------------------------------------------------------------|
| Radiation Safety slit  | 1 mm, 0.6mm or 0.2mm                                                 |
| Primary Axial Soller   | 2.5°                                                                 |
| Secondary Twin Optic   | Set to Motorized slit: Slit width 0.2mm                              |
| Slit Mount             | 0.1 or 0.2mm                                                         |
| Secondary Axial Soller | 2.5°                                                                 |
| Filter                 | None, possibly one absorber foil to avoid detector saturation at low |
|                        | angles                                                               |
| LynxEye detector       | 0D mode mounted 90° turned                                           |
| Scan Type              | Offset coupled TwoTheta/Theta after the sample offset was            |
|                        | determined using a rocking curve                                     |

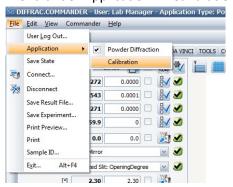
For this mode the detector should be turned 90° for a higher linear range. Nevertheless an absorber is usually necessary for the low angle region. Depending on the sample these measurements are often collected in multiple ranges from 0.1° to perhaps 10° 2theta.

## System Alignment

The goal of the system alignment is to adjust all reference values for motorized drives so that the X-ray goes through the center of the goniometer for Bragg-Brentano geometry. Additional optics with different take-off angles that are close to zero (typically below +-1 such as a Goebel mirror) can be adjusted using deflection angles, which can be associated with any optic in the configuration plugin.



To get a system with twin-twin optic aligned the tools in the image below are necessary.


- 1) A glass slit which mounts in the sample cup and defines the reference plane at theta=0 and 2 theta=0
- 2) A fluorescent screen to check the mirror reflection
- 3) 0.1mm and 0.2mm copper foil absorbers
- 4) The SRM1976a Corundum plate



## **Alignment steps:**

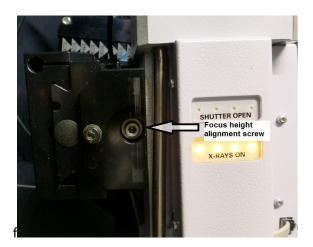
- 1) Göbel mirror optimization:
  - 1.1 Optimize the mirror intensity by adjusting the beam focus height, check mirror intensity and width of reflection
  - 1.2 Check mirror quality (intensity and width of reflection)
  - 1.3 Check, if the radiation safety slit is centered for all slits. If not, adjust height of Goebel mirror and repeat step 1.1
  - 1.4 Visually check with fluorescent screen that the Goebel mirror reflection is within 1mm of the center. If not adjust beam rotation on DOF
- 2) Goniometer reference angle Determination
  - 2.1 Primary Goniometer reference determination
  - 2.2. Secondary Goniometer reference angle determination
- 3) Centering the LynxEye detector strips to the slit of the secondary optic bench
- 4) Determine deflection angle for primary Twin Mirror
- 5) Alignment of Mirror primary beam stop
- 6) Divergence slit alignment
  - 3.1 Slit position alignment centering the Divergence slit
  - 3.2 Opening reference determination Determination of "Var. Closed "property
- 7) Anti-Scatter slit alignment
  - 4.1 Slit position alignment- centering the Anti-Scatter slit
  - 4.2 Opening reference determination Determination of "Var. Closed "property
- 8) Equatorial Soller Slit alignment
  - 8.1 Soller Alignment
  - 8.2 Deflection angle determination
- 9) Calibrate LynxEye Detector in Detector Plugin

Most of the required scan types are only possible with a point detector or the LynxEye detector in 0d mode. To get the correct settings for the stepper motors in the primary and secondary Twin optic the scan types are only available in Calibration mode, which is accessible in the Diffrac Commander File Menu under Application  $\rightarrow$  Calibration.



#### 1. Mirror alignment

The Goebel mirror of the primary twin optic was aligned in the factory and in most cases no alignment of the tilt screw should be necessary. Optimizing the focus height translation should be tried first before changing any alignment screws on the mirror.

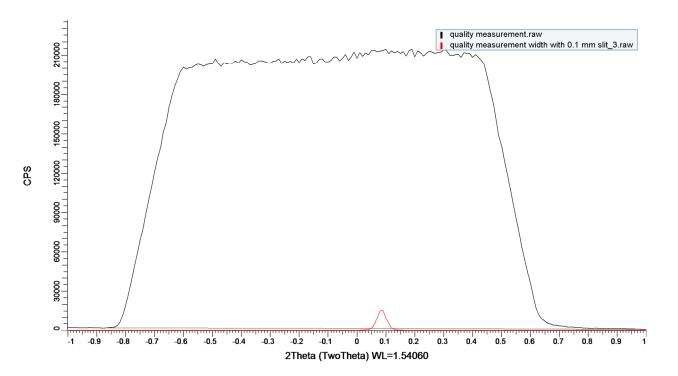

#### 1.1 Optimizing of Beam focus height

An alignment of the X-ray tube focus position may be necessary under the following conditions:

- a.) First set up of the D8 at customer side
- b.) Change of the adapter plate
- c.) Change of the x-ray tube
- d.) Change from point focus to line focus

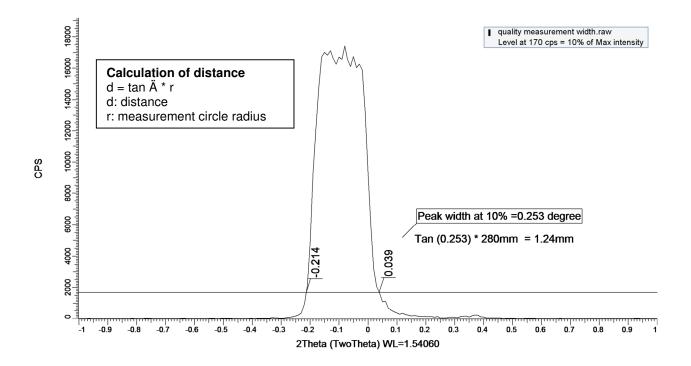
To check the mirror intensity, perform a TwoTheta scan through the direct beam with 0.2mm Cu foil absorber and check the intensity. If it is lower than 200000 cps park the detector in the direct beam and optimize the Intensity using the rate meter and the focus height alignment screw

| Generator                   | 40kV40mA                                                                                                                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                                                                                                                     |
| Primary Optic               | Twin Primary set to Goebel Mirror                                                                                                                                              |
| Radiation safety slit       | None                                                                                                                                                                           |
| Primary Axial Soller Slit   | None                                                                                                                                                                           |
| Sample                      | None                                                                                                                                                                           |
| Secondary Optic             | None                                                                                                                                                                           |
| Secondary Slit              | Absorber 0.2mm Cu foil                                                                                                                                                         |
| Secondary Axial Soller Slit | None                                                                                                                                                                           |
| Detector                    | LynxEye 0D with 6mm opening                                                                                                                                                    |
| Measurement                 | TwoTheta scan from -1 to 1, increment 0.01deg, step time 0.1s                                                                                                                  |
| Evaluation                  | Determine the peak intensity (peak max) Criterion: I>200.000cps<br>Park your detector at the maximum and optimize intensity with focus<br>height alignment screw and Ratemeter |




| 🕺 DIFFRAC.COMMAI                                                    | IDER - User: Lab Manager - Applicatio                                                                                       | n Type: Powder Diffraction - Instrum |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <u>File Edit View</u> Co                                            | mmander <u>H</u> elp                                                                                                        |                                      |
| WIZARD DETECTOR                                                     | Stop All Jobs<br>Position Control<br>Ratemeter                                                                              | TOOLS CONFIGURATION DB MANAGEMEN     |
| C Drive L<br>Theta<br>Two Theta<br>Detector<br>Rot_Phi<br>Ratemeter | PSD Realtime Display<br>Direct Command<br>Transmit Drive Positions<br>Reference And Offset Determination<br>Script Designer |                                      |
|                                                                     | 0%                                                                                                                          | Current Rate [cool                   |
|                                                                     | 0%                                                                                                                          | Reference Rate [cps]                 |
| Close                                                               | Set as Reference Ope                                                                                                        | n Shutter Close Shutter              |

#### **1.2 Quality measurement**


To verify the quality of the mirror alignment the mirror reflection should be measured directly using two absorber foils (0.2mm copper foils). All slits and Soller Slits should be removed and a TwoTheta scan through the mirror reflection is performed.

| Generator                   | 40kV40mA                                                                                                                                                                                  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start position              | Tube at 0°°, Detector at 0°                                                                                                                                                               |
| Primary Optic               | Twin Primary set to Goebel                                                                                                                                                                |
| Radiation safety slit       | None                                                                                                                                                                                      |
| Primary Axial Soller Slit   | none                                                                                                                                                                                      |
| Sample                      | Empty                                                                                                                                                                                     |
| Secondary Optic             | Empty                                                                                                                                                                                     |
| Secondary Slit              | Absorber with 0.2 mm Cu foil                                                                                                                                                              |
| Secondary Axial Soller Slit | None                                                                                                                                                                                      |
| Detector                    | LynxEye 0D with                                                                                                                                                                           |
|                             | 1) 6mm opening for intensity check                                                                                                                                                        |
|                             | 2) 0.075mm opening for peak width check                                                                                                                                                   |
| Measurement                 | TwoTheta continuous scan from -1° to 1° with 0.01 steps and 0.1sec/step                                                                                                                   |
| Evaluation                  | Determine the peak intensity (peak max)<br>Criterion: I>200.000cps                                                                                                                        |
|                             | If the Count rate is insufficient, adjust focus height<br>If that not help, try optimizing Bragg angle or Goebel mirror<br>If still not enough counts consider a new tube, if it is older |

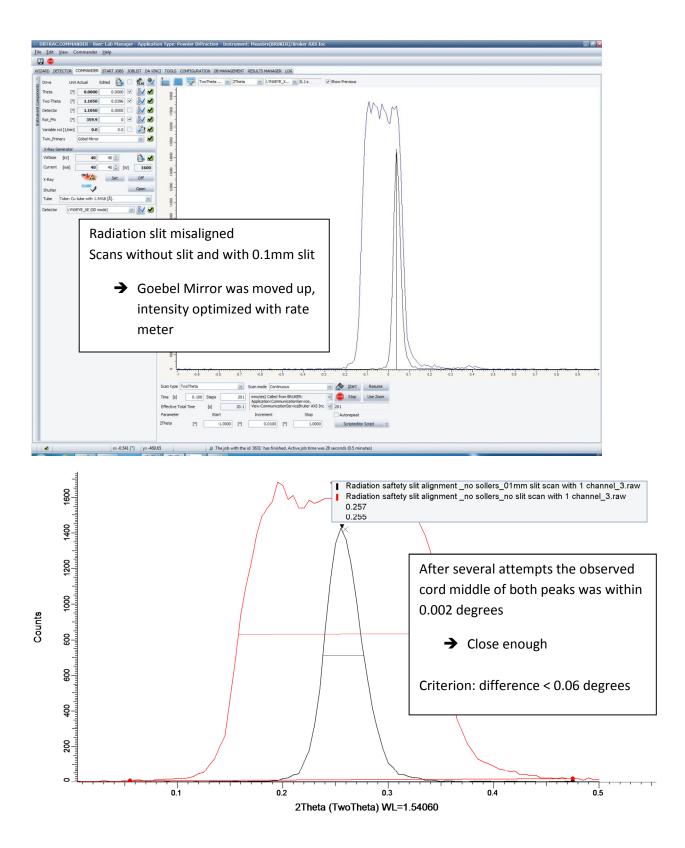


#### 1.2.2 Quality measurement (Peak Width)

To determine the width of the reflection, collect a scan with 0.075mm opening in the LynxEye detector. Criteria: The FWHM at 10% of the intensity should be larger than 0.8mm

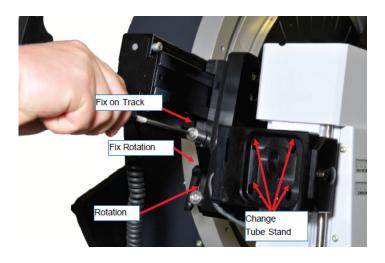


#### 1.3 Radiation safety slit alignment


This slit position cannot be mechanically aligned. Instead the mirror height has to be adjusted to this slit. If it is not perfectly centered to the beam, intensity loss will occur when small slits are used with the mirror. This is important for SAXS measurements, GID measurements at low incidence angles or any measurement where a narrow beam is needed.

To check the factory alignment, perform a TwoTheta scan through the direct beam without a slit and with a 0.1mm slit. If the observed peak center do not line up within 0.06° the mirror height needs to be adjusted to the radiation slit assembly.

| Generator                   | 40kV40mA                                                                               |  |  |
|-----------------------------|----------------------------------------------------------------------------------------|--|--|
| Start position              | Tube at 0°°, Detector at 0°                                                            |  |  |
| Primary Optic               | Twin Primary set to Goebel                                                             |  |  |
| Radiation safety slit       | 1) None                                                                                |  |  |
|                             | 2) 0.1mm slit                                                                          |  |  |
| Primary Axial Soller Slit   | None                                                                                   |  |  |
| Sample                      | Empty                                                                                  |  |  |
| Secondary Optic             | Empty                                                                                  |  |  |
| Secondary Slit              | Absorber with 0.2 mm Cu foil                                                           |  |  |
| Secondary Axial Soller Slit | None                                                                                   |  |  |
| Detector                    | LynxEye 0D with 0.075mm opening                                                        |  |  |
| Measurement                 | TwoTheta continuous scan from -1° to 1° with 0.01 steps and                            |  |  |
|                             | 0.1sec/step                                                                            |  |  |
| Evaluation                  | Determine the peak gravity (cord middle at 10% height) for both                        |  |  |
|                             | measurements                                                                           |  |  |
| Criterion                   | If  x-xo  > 0.06deg which corresponds to 0.3mm, align all GM alignment                 |  |  |
|                             | screws to new height and maximize GM Bragg screw to maximum intensity with rate meter. |  |  |


If the mirror height needs to be adjusted, move all three screws approx. a quarter turn (in this example counterclockwise to move the mirror up)

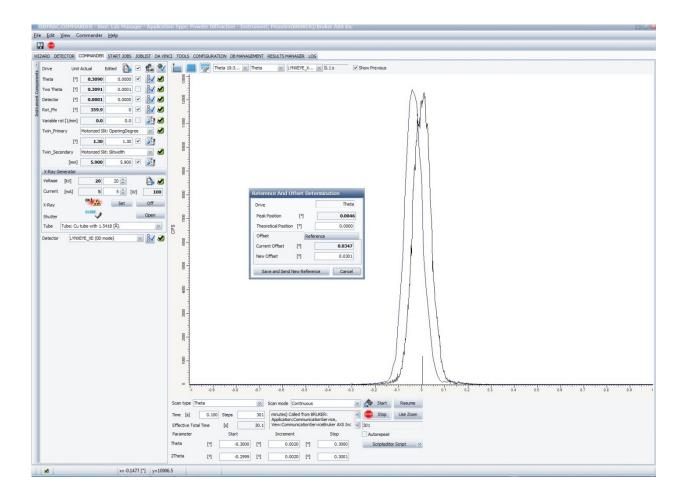




| 1.4 Centering the | <b>Goebel mirror</b> | by adjusting | the tube rotation  |
|-------------------|----------------------|--------------|--------------------|
| in dentering the  |                      | by uujubung  | the tube i otution |

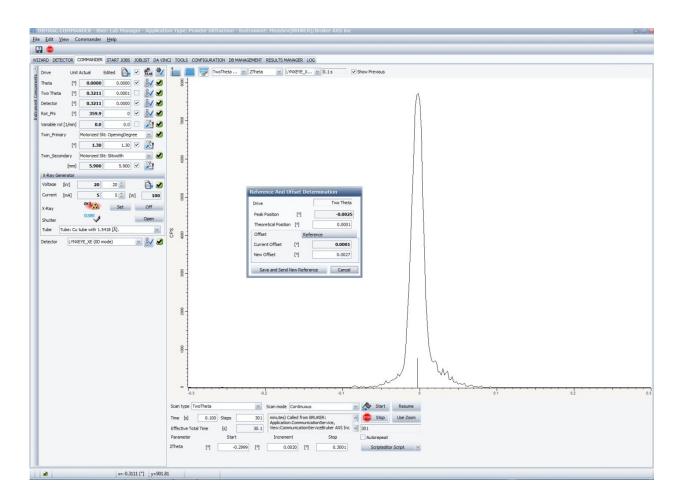
| Generator                   | 40kV4mA                                                                     |
|-----------------------------|-----------------------------------------------------------------------------|
| Start position              | Tube at 5°, Detector at 0°                                                  |
| Primary Optic               | Set to Goebel mirror                                                        |
| Radiation safety slit       | 0.2mm                                                                       |
| Primary Axial Soller Slit   | None for more intensity                                                     |
| Sample                      | Fluorescent sample                                                          |
| Secondary Optic             | Empty                                                                       |
| Secondary Slit              | Absorber with 0.1 mm Cu foil                                                |
| Secondary Axial Soller Slit | 2.5°                                                                        |
| Detector                    | LynxEye 0D with 0.075mm opening                                             |
| Measurement                 | Turn off the lights and visually check if the mirror reflection is centered |
|                             | on the screen                                                               |
| Evaluation                  | If beam is not centered loosen fix rotation lever and change rotation on    |
|                             | rotation beam steering plate                                                |







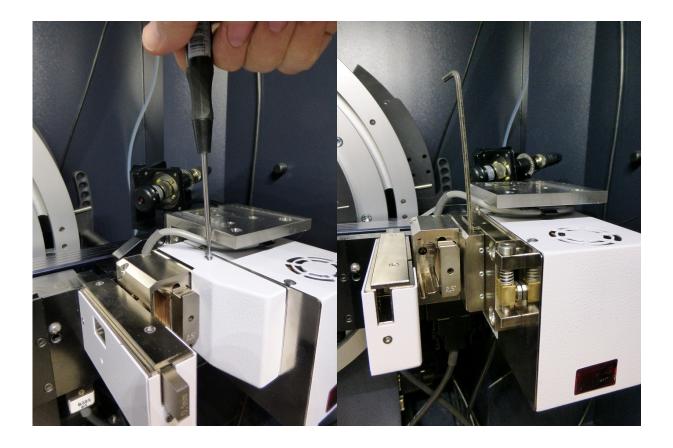

## 2. Goniometer reference angle Determination


#### 2.1 Primary Goniometer reference angle determination

| Generator                   | 20kV5mA                                                                                                                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                                                                                       |
| Primary Optic               | Twin Primary set to max. opening                                                                                                                 |
| Radiation safety slit       | None                                                                                                                                             |
| Primary Axial Soller Slit   | 2.5°                                                                                                                                             |
| Sample                      | Glass slit                                                                                                                                       |
| Secondary Optic             | Empty                                                                                                                                            |
| Secondary Slit              | Absorber with 0.1 mm Cu foil                                                                                                                     |
| Secondary Axial Soller Slit | 2.5°                                                                                                                                             |
| Detector                    | LynxEye 0D with 10mm opening                                                                                                                     |
| Measurement                 | Theta continuous scan from -1° to 1° with 0.01 steps and 0.1sec/step                                                                             |
| Evaluation                  | Go to COMMANDER menu and press REFERENCE AND OFFSET<br>DETERMINATION.                                                                            |
|                             | Criterion: If $ 0-X  > 0.005$ deg, adjust the reference position by pressing ok<br>Repeat scan in a smaller range with small increment to verify |

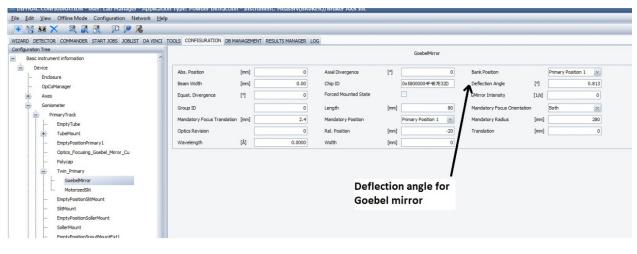


#### 2.2 Secondary Goniometer reference angle determination


| Generator                   | 20kV5mA                                                                         |
|-----------------------------|---------------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                      |
| Primary Optic               | Twin Primary set to max. opening                                                |
| Radiation safety slit       | Absorber with 0.1 mm Cu foil                                                    |
| Primary Axial Soller Slit   | 2.5°                                                                            |
| Sample                      | Glass slit                                                                      |
| Secondary Optic             | Secondary Twin wide open                                                        |
| Secondary Slit              | 0.1mm slit                                                                      |
| Secondary Axial Soller Slit | 2.5°                                                                            |
| Detector                    | LynxEye 0D with 10mm opening                                                    |
| Measurement                 | TwoTheta continuous scan from -1° to 1° with 0.01 steps and 0.1sec/step         |
| Evaluation                  | Go to COMMANDER menu and press REFERENCE AND OFFSET                             |
|                             | DETERMINATION.                                                                  |
|                             | Criterion: If $ 0-X  > 0.005$ deg, adjust the reference position by pressing ok |
|                             | Repeat scan in a smaller range with small increment to verify                   |



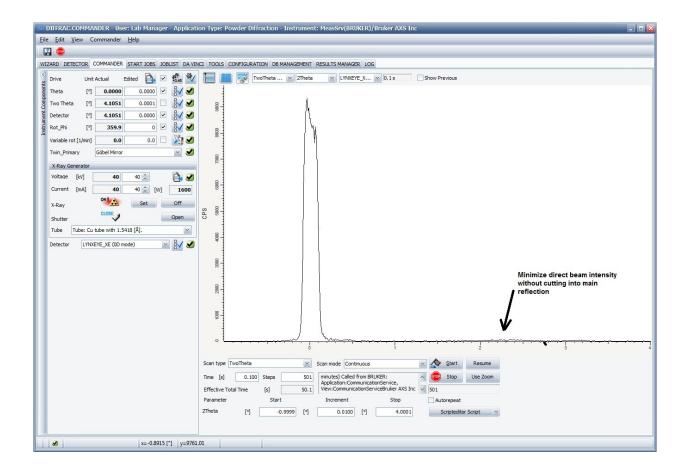
# 3. Centering the LynxEye detector strips to the slit position of the secondary optical bench


Remove the front cover of the LynxEye XE detector with a small flat head screwdriver (see image below). Adjust the position of the detector strips with an Allen wrench so that the center strip is lined up with a small slit in the secondary optical bench.

| Generator                   | 20kV5mA                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                           |
| Primary Optic               | Twin Primary set to max. opening                                                     |
| Radiation safety slit       | Absorber with 0.1 mm Cu foil                                                         |
| Primary Axial Soller Slit   | 2.5°                                                                                 |
| Sample                      | Glass slit                                                                           |
| Secondary Optic             | Secondary Twin wide open                                                             |
| Secondary Slit              | 0.1mm slit                                                                           |
| Secondary Axial Soller Slit | 2.5°                                                                                 |
| Detector                    | LynxEye 0D with 0.1mm opening                                                        |
| Measurement                 | TwoTheta continuous scan from -0.3° to 0.3° with 0.002 steps and                     |
|                             | 0.1sec/step                                                                          |
| Evaluation                  | Adjust strip position for maximum intensity with the rate meter in<br>Commander Menu |



|  | 4. | Determine | Deflection | <b>Angle for</b> | <b>Primary T</b> | 'win | <b>Goebel</b> I | Mirror |
|--|----|-----------|------------|------------------|------------------|------|-----------------|--------|
|--|----|-----------|------------|------------------|------------------|------|-----------------|--------|

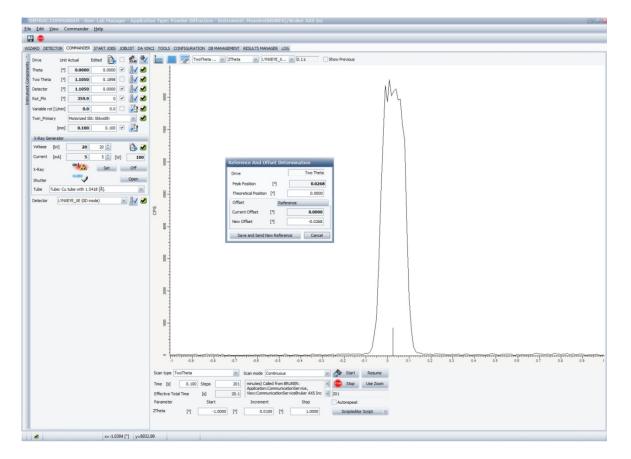

| Generator                   | 40kV40mA                                                                    |
|-----------------------------|-----------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                  |
| Primary Optic               | Twin Primary set Goebel mirror                                              |
| Radiation safety slit       | Absorber with 0.2 mm Cu foil                                                |
| Primary Axial Soller Slit   | 2.5°                                                                        |
| Sample                      | No sample                                                                   |
| Secondary Optic             | Secondary Twin wide open                                                    |
| Secondary Slit              |                                                                             |
| Secondary Axial Soller Slit | 2.5°                                                                        |
| Detector                    | LynxEye 0D with 0.075mm opening                                             |
| Measurement                 | TwoTheta continuous scan from -1° to 1° with 0.002 steps and                |
|                             | 0.1sec/step                                                                 |
| Evaluation                  | Scan through the direct beam, evaluate peak position and correct            |
|                             | deflection angle for primary twin optic gobel mirror in config plugin, save |
|                             | and activate your configuration change                                      |



| 🔅 DIFFRAC.CONIFIGURATION - User; Lab Manager - Application Type: Powder Diffraction - Instrument: MeasSrv(BRUKER)/Bruker AXS Inc |                                  |                         |                                 |                    |                             |                    |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|---------------------------------|--------------------|-----------------------------|--------------------|
| Eile Edit View Offline Mode Configuration Network                                                                                | lelp                             |                         |                                 |                    |                             |                    |
| 🔹 😤 🐱 🗶 🔍 🗶 🕅 🖓 📜 🧸                                                                                                              |                                  |                         |                                 |                    |                             |                    |
| WIZARD DETECTOR COMMANDER START JOBS OF Save Confi                                                                               | guration to Database             | ENT RESULTS MANAGER LOG |                                 |                    |                             |                    |
| Configuration Tree Basic instrument information                                                                                  |                                  |                         |                                 | GoebelMirror       |                             |                    |
| Device     Endosure                                                                                                              | Abs. Position [mm]               | 0                       | Axial Divergence [              | 9 0                | Bank Position               | Primary Position 1 |
|                                                                                                                                  | configuration to Da              | atabase                 | Chip ID<br>Forced Mounted State | 0x58000004F4B7E32D | Deflection Angle [°]        | 0.813              |
| + Axes                                                                                                                           | Equal: Divergence [1]            | 0                       | Porced Mounted State            |                    | GMirror Intensity [1/s]     | 0                  |
| Goniometer                                                                                                                       | Group ID                         | 0                       | Length [i                       | mm] 80             | Mandatory Focus Orientation | Both 🖂             |
| PrimaryTrack     EmptyTube                                                                                                       | Mandatory Focus Translation [mm] | 2.4                     | Mandatory Position              | Primary Position 1 | Mandatory Radius [mm        | ]280               |
| ± TubeMount                                                                                                                      | Optics Revision                  | 0                       | Rel. Position [i                | mm] -20            | Translation [mm             | ] 0                |
| EmptyPositionPrimary1                                                                                                            | Wavelength [Â]                   | 0.0000                  | Width [                         | mm] 0              |                             |                    |

## 5. Alignment of Mirror Primary Beam Stop

| Generator                   | 40kV40mA                                                                 |
|-----------------------------|--------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                               |
| Primary Optic               | Twin Primary set Goebel mirror                                           |
| Radiation safety slit       | Absorber with 0.2 mm Cu foil                                             |
| Primary Axial Soller Slit   | 2.5°                                                                     |
| Sample                      | No sample                                                                |
| Secondary Optic             | Secondary Twin wide open                                                 |
| Secondary Slit              |                                                                          |
| Secondary Axial Soller Slit | 2.5°                                                                     |
| Detector                    | LynxEye 0D with 0.075mm opening                                          |
| Measurement                 | TwoTheta continuous scan from -1° to 4° with 0.01 steps and 0.1sec/step  |
| Evaluation                  | Determine the peak intensity of the direct beam at 2.5°.                 |
|                             | Align the beam stop manually to minimize direct beam without cutting     |
|                             | into the main reflection. The beam stop is visible after removing the    |
|                             | housing of the primary twin and has to be adjusted manually by trial and |
|                             | error.                                                                   |

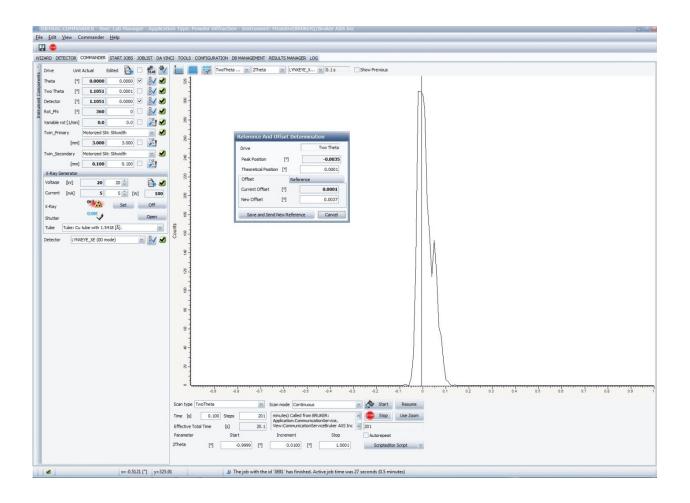


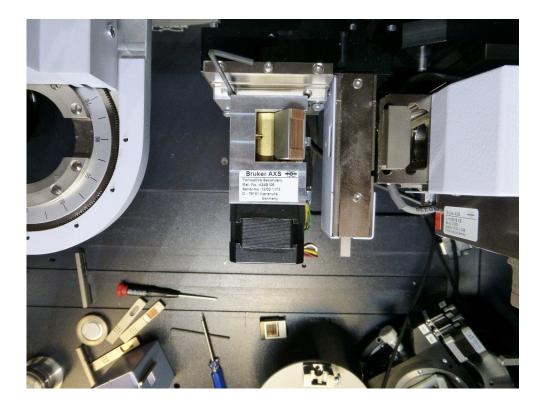

## 6. Divergence slit alignment

To adjust the position of the divergence slit the cover of the primary twin optic has to be taken off with a T8 Torx screw driver. There are two Allen wrench (M2) screws above and below the motorized divergence slit assembly that can be used to move the variable slit assembly. The goal is to perform a detector scan with a small divergence slit and then adjust the resulting peak position mechanically by loosening one adjustment screw and tightening the opposite screw.

| Generator                   | 20kV5mA                                                   |
|-----------------------------|-----------------------------------------------------------|
| Start position              | Tube at 0°°, Detector at 0°                               |
| Primary Optic               | Twin Primary set to 0.1mm                                 |
| Radiation safety slit       | None                                                      |
| Primary Axial Soller Slit   | 2.5°                                                      |
| Sample                      | Empty                                                     |
| Secondary Optic             | Empty                                                     |
| Secondary Slit              | Absorber with 0.1 mm Cu foil                              |
| Secondary Axial Soller Slit | 2.5°                                                      |
| Detector                    | LynxEye 0D with 0.075mm opening                           |
| Measurement                 | TwoTheta continuous scan from -1° to 1° with 0.01         |
|                             | steps and 0.1sec/step                                     |
| Evaluation                  | Go to COMMANDER menu and press REFERENCE                  |
|                             | AND OFFSET DETERMINATION.                                 |
|                             | Criterion: If $ 0-X  > 0.01$ deg, align the slit manually |



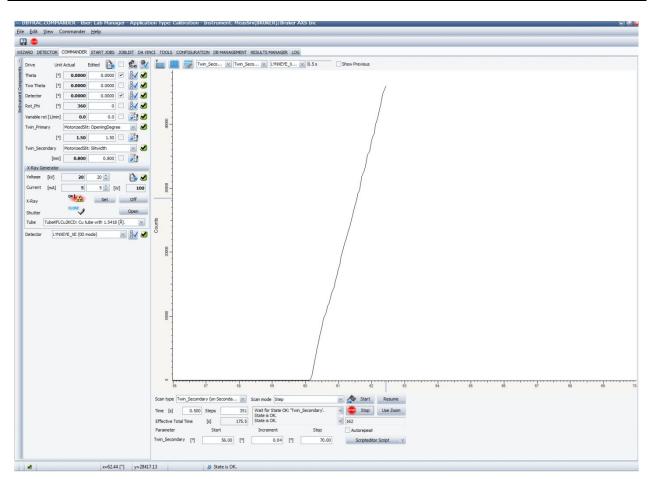




If the peak is too high as in the screenshot above, tighten the screw below the assembly and loosen the top screw slightly.

#### 7. Anti-Scatter Slit Alignment

#### 7.1 Alignment of Slit position

| Generator                   | 20kV5mA                                                   |
|-----------------------------|-----------------------------------------------------------|
| Start position              | Tube at 0°°, Detector at 0°                               |
| Primary Optic               | Twin Primary set to 3mm                                   |
| Radiation safety slit       | None                                                      |
| Primary Axial Soller Slit   | 2.5°                                                      |
| Sample                      | Glass slit                                                |
| Secondary Optic             | Set to 0.1mm                                              |
| Secondary Slit              | Absorber with 0.1 mm Cu foil                              |
| Secondary Axial Soller Slit | 2.5°                                                      |
| Detector                    | LynxEye 0D with 10mm opening                              |
| Measurement                 | TwoTheta continuous scan from -1° to 1° with 0.01         |
|                             | steps and 0.1sec/step                                     |
| Evaluation                  | Go to COMMANDER menu and press REFERENCE                  |
|                             | AND OFFSET DETERMINATION.                                 |
|                             | Criterion: If $ 0-X  > 0.01$ deg, align the slit manually |

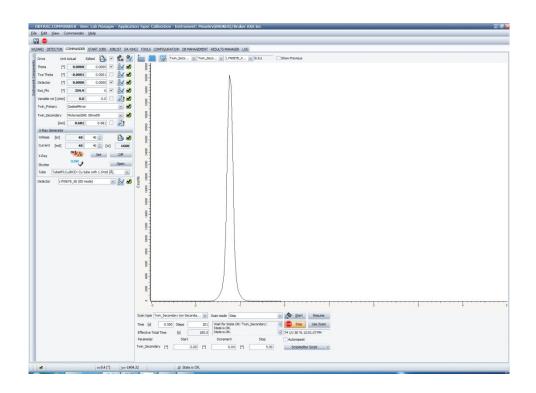





### 7.2 Opening of reference angle determination

| Generator                   | 20kV5mA                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                                                                                                                                                                                   |
| Primary Optic               | Twin Primary set to 3mm                                                                                                                                                                                                                      |
| Radiation safety slit       | None                                                                                                                                                                                                                                         |
| Primary Axial Soller Slit   | 2.5°                                                                                                                                                                                                                                         |
| Sample                      | None                                                                                                                                                                                                                                         |
| Secondary Optic             | Set to 0.1mm                                                                                                                                                                                                                                 |
| Secondary Slit              | Absorber with 0.1 mm Cu foil                                                                                                                                                                                                                 |
| Secondary Axial Soller Slit | 2.5°                                                                                                                                                                                                                                         |
| Detector                    | LynxEye 0D with 10mm opening                                                                                                                                                                                                                 |
| Measurement                 | TWIN Antiscatter Slit motor scan from -1° to 1° around Var. Slit Closed, with 0.02% step and 0.5s/step                                                                                                                                       |
| Evaluation                  | Determine abscissa of the measurement using the linear part of the signal slope<br>If $ x-xo  > 0.05deg$ , correct the var. slit open property<br>in the CONFIGURATION<br>plugin, save and activate the new configuration. Else<br>continue. |

The scan type necessary for this alignment is only available in Calibration mode




#### 8. 1 Equatorial Soller Slit alignment

The goal of this alignment is to line up the two Soller slit parts that make up the equatorial Soller slit. This is achieved by determining the correct stepper motor position where the two Soller slit parts line up perfectly. The value is entered in the Config plugin under Secondary Twin optic as "Max. 2<sup>nd</sup> Position" property. The necessary stepper motor scan type is only available in Calibration mode.

Before starting this scan, make sure that the deflection angle for the Secondary Twin Soller was set to zero and the value was "saved and activated" before determining the Max .2<sup>nd</sup> position property.

| Generator                   | 40kV40mA                                                                                                    |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                                                                                  |
| Primary Optic               | Twin Primary set to Goebel Mirror                                                                           |
| Radiation safety slit       | 0.2 mm Cu absorber foil                                                                                     |
| Primary Axial Soller Slit   | 2.5°                                                                                                        |
| Sample                      | No sample                                                                                                   |
| Secondary Optic             | Soller 0.2                                                                                                  |
| Secondary Slit              | None                                                                                                        |
| Secondary Axial Soller Slit | 2.5°                                                                                                        |
| Detector                    | LynxEye 0D with 14mm opening                                                                                |
| Measurement                 | TWIN Antiscatter Slit step scan from -1° to 1° around 2 nd position property, with 0.02°/step and 0.5s/step |
| Evaluation                  | Determine peak maximum and enter the corresponding value on the                                             |
|                             | x-axis into the configuration file under Twin Secondary into the Max.                                       |
|                             | 2 <sup>nd</sup> position                                                                                    |



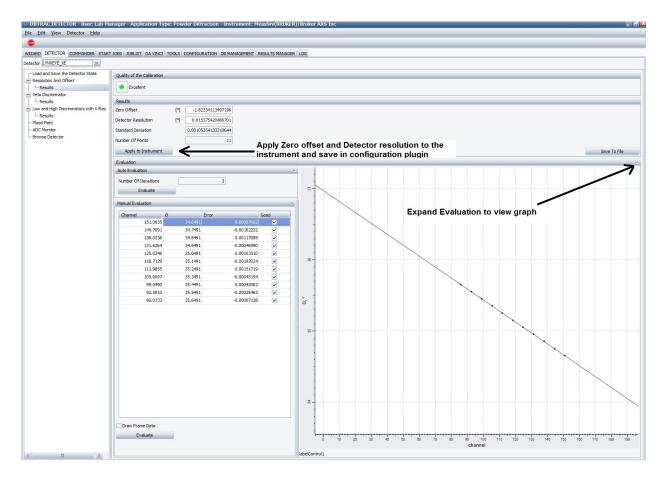
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OBLIST DA VINCI TOOLS CONF. |      |                                |                             |             |             |                    |      |             |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|--------------------------------|-----------------------------|-------------|-------------|--------------------|------|-------------|-------------|
| Configuration Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |      |                                |                             | Secondary   |             |                    |      |             |             |
| Basic instrument information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |                                |                             | accorrigary |             |                    |      |             |             |
| E Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plugs                       |      |                                |                             |             |             |                    |      |             |             |
| Endosure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plug name                   | Û    | Connected to component         |                             |             | Socket Type | Socket number      | 5    | Status      | Details     |
| OpCoManager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OpticMotor                  |      | /Device/MotorizedDrives/Optics | Motor_Secondary_Twin        |             | CTRL        |                    | 1 0  | DK          | 1           |
| + Axes<br>Goniometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | _    |                                |                             |             |             |                    |      |             |             |
| Goniometer     FrimaryTrack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |      |                                |                             |             |             |                    |      |             |             |
| + Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Abs. Position               | [mm] | 0                              | Axial Divergence            | [9]         | 0           | Bank Position      |      | Secondary P | osition 1 🔛 |
| SecondaryTrack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chip ID                     |      | 0x1F000004F411702D             | Deflection Angle            | [°]         | 0           | Equat. Divergence  | [°]  |             | 0           |
| EmptySecondaryPosition1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Forced Mounted State        |      |                                | Group ID                    |             | 0           | Length             | [mm] |             | 80          |
| Twin_Secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mandatory Focus Orientation | 1    | Both                           | Mandatory Focus Translation | [mm]        | 0           | Mandatory Position |      | Secondary P | osition 1 🖂 |
| MotorizedSlit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mandatory Radius            | [mm] | 0                              | Max. 2nd Position           | [*]         | -1.28       | Min. Slit Position | [°]  |             | 40          |
| Soller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Optics Revision             |      | 0                              |                             | [9]         | 0           | Rel. Position      | [mm] |             | 0           |
| EmptySlitMount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |      |                                | Var Slit Closed             |             |             |                    | [Â]  |             |             |
| SlitMount ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Translation                 | [mm] | 0                              | var Sit Closed              | [°]         | 56.54       | Wavelength         | [A]  |             | 0.0000      |
| EmptySollerMount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Width                       | [mm] | 0                              |                             |             |             |                    |      |             |             |
| SollerMount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |      |                                |                             |             |             |                    |      |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |      |                                |                             |             |             |                    |      |             |             |
| EmptyPositionDOM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |      |                                |                             |             |             |                    |      |             |             |
| EmptyPositionDOM1     DetectorOpticsMount1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      |                                |                             |             |             |                    |      |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2     DetectorOpticsMount2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2     DetectorOpticsMount2     DetectorOpticsMount2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticaMount1     EmptyPoationDON2     DetectorOpticaMount2     DetectorNount     LYNXEYE_XE     XRay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2     DetectorOpticsMount2     DetectorOpticsMount2     LYNEYFE_XE     XRay     MotorizedDrives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2     DetectorOpticsMount2     DetectorMount     LYNNEYE_XE     XRay     MotorizedDrives     Inner_Circle_Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticaMount1     Empt/PoationDOM2     DetectorOpticaMount2     DetectorNount     LINKEYE_XE     XRay     MotorizedDrives     Inner_Circle_Motor     Optics_Motor_Primary_Twin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPostionDOM2     DetectorOpticsMount2     DetectorMount     LiYNETE_XE     XRay     MotorizedDrives     Inner_Circle_Motor     Optics_Motor_Primary_Twin     Optics_Motor_Secondary_Twin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2     DetectorOpticsMount2     DetectorMount     LIYNEYE_XE     XRay     MotorizedDrives     Inner_Cride_Motor     Optics_Motor_Primary_Twin     Optics_Motor_Secondary_Twin     Outer_Cride_Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDOM2     DetectorOpticsMount2     DetectorMount     LIVNEYE XE     MotorizedDrives     Inner_Cride_Motor     Optics_Motor_Secondary_Twin     Outer_Cride_Motor     Rot_Stage_Phi_Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticaMount1     EmptyPositionDOM2     DetectorOpticaMount2     DetectorOpticaMount2     LYNXEYE_XE     XRay     MotorizedDrives     Inner_Crice_Motor     Optics_Motor_Primary_Twin     Optics_Motor_Secondary_Twin     Outer_Crice_Motor     Roto_Stage_Phi_Motor     Stage_Phi_Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPoationDON2     DetectorOpticsMount2     DetectorOpticsMount2     DetectorMount     LYNXETE_SE     XRay     MotorizedDrives     Inner_Gride_Motor     Optics_Motor_Primary_Twin     Optics_Motor_Secondary_Twin     Optics_Motor_Secondary_Twin     Optics_Motor_Secondary_Twin     Optics_Motor     Rot_Stage_Phi_Motor     Stage_Phi_Motor     Stage_Phi_Moto |                             |      |                                |                             |             |             |                    |      |             |             |
| DetectorOpticsMount1     EmptyPositionDON2     DetectorOpticsMount2     DetectorOpticsMount2     LIYNEYE_XE     XRay     MotorizedDrives     Inner_Gride_Motor     Optics_Motor_Primary_Twin     Optics_Motor_Secondary_Twin     Outer_Crite_Motor     Rotz_Stage_Phi_Motor     Stage_Phi_Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |      |                                |                             |             |             |                    |      |             |             |

## 8.2 Determination of the Deflection angle for the Secondary Twin-Equatorial Soller

| Generator                   | 40kV40mA                                           |
|-----------------------------|----------------------------------------------------|
| Start position              | Tube at 0°, Detector at 0°                         |
| Primary Optic               | Twin Primary set to Goebel Mirror                  |
| Radiation safety slit       | 1mm                                                |
| Primary Axial Soller Slit   | 2.5°                                               |
| Sample                      | SRM1976a                                           |
| Secondary Optic             | Soller 0.2                                         |
| Secondary Slit              | None                                               |
| Secondary Axial Soller Slit | None                                               |
| Detector                    | LynxEye 0D with 14mm opening                       |
| Measurement                 | Coupled TwoTheta/theta continuous scan from -      |
|                             | 30° to 40° with 0.03 steps and 0.1sec/step         |
| Evaluation                  | Determine angle of main corundum peak, adjust      |
|                             | the deflection angle for secondary the Twin-Soller |
|                             | in the configuration plug-in.                      |

If the variable anti-scatter slit is open to the maximum value the equatorial Soller may hit the housing of the sec. twin optic. In that case the reproducibility of the Max. 2<sup>nd</sup> position may not be given. Adjust the maximum "Upper" parameter in the configuration of the secondary twin optic to a slightly lower value to limit the maximum opening.

Collect multiple data sets in parallel beam (with Goebel mirror and equatorial Soller) and with Bragg Brentano and full opening to verify that both scans collect reproducible data.


| DETECTOR COMMANDER START JOBS JOBLE                                 | ST DAVINCI TOOLS CONFIGURATION | DB MANAGEMENT RESULT                               | S MANAGER LOG |                                   |                    |                    |                                           |     |         |
|---------------------------------------------------------------------|--------------------------------|----------------------------------------------------|---------------|-----------------------------------|--------------------|--------------------|-------------------------------------------|-----|---------|
| ation Tree                                                          |                                |                                                    |               | Optics_I                          | Notor_Secondary_Tw | n                  |                                           |     |         |
| asic instrument information<br>Device                               | 6                              |                                                    |               |                                   |                    |                    |                                           |     |         |
| - Endosure                                                          | Plugs                          |                                                    |               |                                   |                    |                    |                                           |     |         |
| OpCoManager                                                         | Plug name<br>Bectronics        | 0 Connected to componen<br>/Device/ControlRack/AIB |               | Socket Type<br>SM                 | Socket number      | Status<br>3 OK     |                                           |     | Detals  |
| Axes                                                                | Bectronics                     | /Device/ControlRack/AIB                            | oard1         | SM                                |                    | 3 OK               |                                           |     | 1       |
| Goniometer                                                          | OptEncoder                     |                                                    |               | BVC                               |                    | 1 Optional plug Op | Encoder is not connected to the socket    |     | 1       |
| XRay<br>MotorizedDrives                                             | 🖋 Storage                      | /Device/Parts/RamPile                              |               | MDA                               |                    | 9 OK               |                                           |     | 1       |
| <ul> <li>Cap_Stage_Phi_Motor</li> <li>Inner_Circle_Motor</li> </ul> | Acceleration Forward Gain      |                                                    | 0             | Acceleration Time                 | [5]                | 0.2                | Add. Profile Dist.                        |     |         |
| Optics_Motor_Primary_Twin     Optics Motor Secondary Twin           | Additional Home Marks          | 0                                                  |               | Additional Profile Time           | [1]                | 0                  | Baddash                                   |     |         |
| - Outer Orde Motor                                                  | BLAS Current                   | [%]                                                | 60            | BIAS Delay                        | [ms]               | 0                  | Current Control Integrative               |     | 0.0     |
| - Rot_Stage_Phi_Motor                                               | Current Control Proportional   |                                                    | 8             | Differential Gain                 |                    | 0                  | ECounts                                   |     |         |
| - Stage_Chi_Motor                                                   | Fast                           |                                                    | 3600          | Fine Adjustment                   | V                  |                    | Full Steps per Revolution                 |     | 4       |
| Stage_Phi_Motor                                                     | Home Mark                      |                                                    | 1             | Home Mark Distances               | 0                  |                    | Home Marks                                |     |         |
| ControlRack<br>Controllers                                          | Integral Gain                  |                                                    | 0             | Integration Limit                 |                    | 0                  | lower                                     |     | -5.0062 |
| DetectorOptics                                                      | Max, Velocity Adjust           |                                                    | 0             | Mech, Gear                        |                    | 360                | Modulus                                   | off |         |
| Parts                                                               | Move Limit                     |                                                    | 0             | MType                             |                    | 1                  | Number of samples for the derivative term |     | -       |
| SitContainer                                                        | Open Loop Current High         |                                                    | 0             | Open Loop Current Low             |                    | 0                  | Output Scale Factor for Servo DC Motors   |     |         |
| SollerContainer                                                     | Phase Current                  | [A]                                                | 0.9           | Pos. Error 1 (Motor at Rest)      |                    | 0.1                | Pos. Error2 (DC Motor at const. Speed)    |     | 0       |
|                                                                     | Positioning Error Delay        | 240                                                | 0.9           | Positioning Error3 (Stepper Motor | nat at cost        | 0                  | Proportional Gain                         |     | -       |
|                                                                     | Reference Position             |                                                    | 0             | Resolution                        | INTOLIEDI          | 0.0140625          | Retaining Current High                    |     |         |
|                                                                     | Retaining Current Low          |                                                    | 0             | Settle Time                       |                    | 0.0140023          | Settle Window                             |     |         |
|                                                                     | Sow                            |                                                    | 400           | Slowdown                          |                    | 0                  | Suppression Level                         |     |         |
|                                                                     |                                |                                                    |               |                                   |                    | 0                  |                                           |     |         |
|                                                                     | Suppression Min. Velocity      |                                                    | -1            | P Upper                           |                    | 93.5015625         | Velocity Forward Gain                     |     |         |
|                                                                     | Registers                      | Reduce U                                           | pper Pro      | perty to limit the                | e                  |                    |                                           |     |         |
|                                                                     | Sockets                        | maximun                                            | n opening     | of secondary Ty                   | vin moto           | r                  |                                           |     |         |

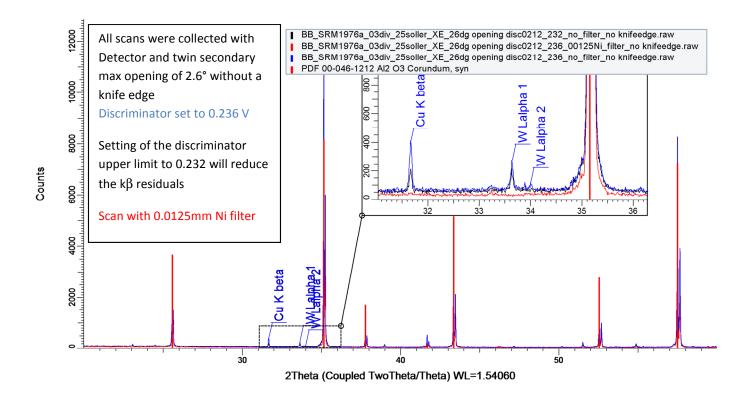
## 9. LynxEye Detector Calibration

So far all alignment measurements were taken with the LynxEye detector in 0d mode, essential using it as a point detector. To be able to use it in 1d mode, resolution and offset values have to be determined to account for parallax errors. This is done in the detector plugin of the Diffrac.measurement software.

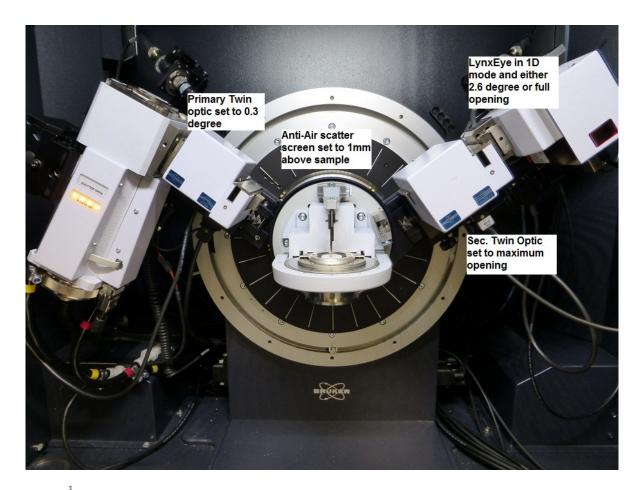
| Generator                   | 40kV40mA                                                              |
|-----------------------------|-----------------------------------------------------------------------|
| Start position              | Changes for varies PSD fixed scans                                    |
| Primary Optic               | Twin Primary set to 0.3° opening                                      |
| Radiation safety slit       | None                                                                  |
| Primary Axial Soller Slit   | 2.5°                                                                  |
| Sample                      | SRM1976a                                                              |
| Secondary Optic             | Wide open                                                             |
| Secondary Slit              | None                                                                  |
| Secondary Axial Soller Slit | 2.5°                                                                  |
| Detector                    | LynxEye 1D with maximum opening                                       |
| Measurement                 | Measure directly in Detector plugin                                   |
| Evaluation                  | Wait for all pdf fixed scan measurement to finish and inspect results |

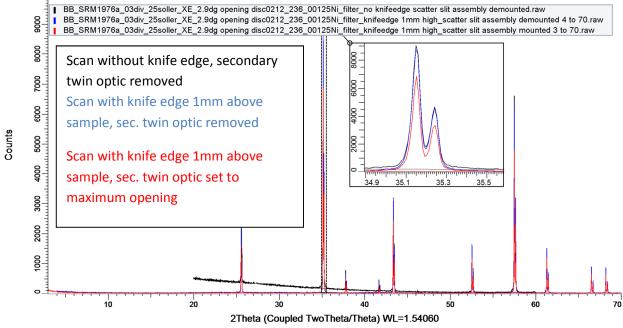
| 😹 DIFFRAC.DETECTOR - User: Lab Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nager - Application Type: Powder Diffraction - Instrument: MeasSrv(BRUKER)/Bruker AXS Inc                                                                                                                                                                                           | - 2                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <u>File Edit View Detector Help</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                 |                     |
| WIZARD DETECTOR COMMANDER START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JOBS JOBLIST DA VINCE TOOLS CONFIGURATION DB MANAGEMENT RESULTS MANAGER LOG                                                                                                                                                                                                         |                     |
| Detector LYNXEYE_XE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                     |
| -Load and Save the Detector State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Resolution and Zero Offset Determination                                                                                                                                                                                                                                            |                     |
| Lenute     Veb Doctminator     Lenute     Veb Doctminator     Lenute     Lenute | Calaration by Theoretical Caladation         132           Number of Channels         132           Channel Size         [mm]           Detector Size         [mm]           Secondary Track Radus         [mm]           Detector Angle         [9]           Calarate         [9] | Advanced Settings   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calibration by Mesurement                                                                                                                                                                                                                                                           | Advariced securitys |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Theoretical 27theta Peak     [*]     35.1491     Calculation       Theoretical Theta Peak     [*]     17.5746     Line Actual       Detector Opening     [*]     2.952080730     Peak position of SRM1976a                                                                          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Step Size         [9]         0.1000           Time per Step         [6]         10.000           Sample Rotations            Rot_PH         Speed [1/min]         0.0                                                                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seve Experiment                                                                                                                                                                                                                                                                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Measure Measurement Status                                                                                                                                                                                                                                                          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calibration by Existing Data                                                                                                                                                                                                                                                        | •                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | File Name                                                                                                                                                                                                                                                                           |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Load Reload                                                                                                                                                                                                                                                                         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                     |




After the calibration run the results should indicate excellent quality. Apply the determined Zero Offset and resolution values to the configuration plugin. There is no download necessary.

The system is ready for some test scans on standard samples.


## **Example scans on Standard Samples**


| Generator                   | 40kV40mA                                                              |
|-----------------------------|-----------------------------------------------------------------------|
| Primary Twin Optic          | Twin Primary set to 0.3° opening                                      |
| Radiation safety slit       | None                                                                  |
| Primary Axial Soller Slit   | 2.5°                                                                  |
| Sample                      | SRM1976a                                                              |
| Knife Edge                  | Removed or set to 1mm above the sample                                |
| Secondary Twin Optic        | Set to maximum (2.6°) or completely demounted for 25% higher count    |
|                             | rate                                                                  |
| Secondary Slit              | None                                                                  |
| Secondary Axial Soller Slit | 2.5°                                                                  |
| Detector                    | LynxEye 1D set to 2.6° or maximum angle if secondary Twin was         |
|                             | removed                                                               |
| Measurement                 | Coupled TwoTheta/theta continuous scan from 3° to 70° with 0.01 steps |
|                             | and 0.1sec/step                                                       |
| Example scans               | in subdirectory \ scans after alignment\BB                            |

### **Bragg-Brentano Scans on SRM1976a**

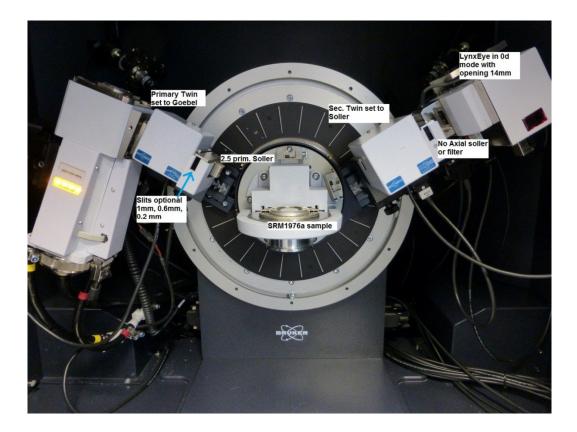


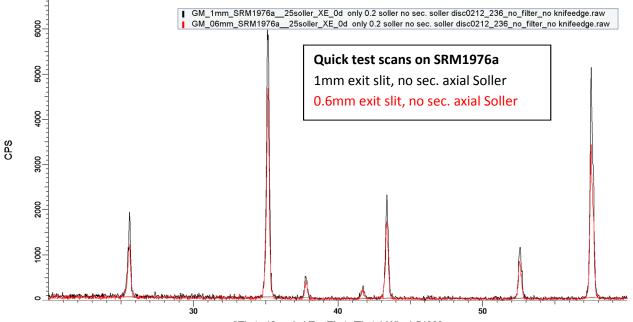
## Measuring lower 2 theta angles





Typical measurement ranges for pharmaceutical samples range from 3 to 40° 2theta and for mineral samples from 3 to 70° 2theta. These ranges can be measured with the full opening of the LynxEye detector using all channels. The background from air scatter can be controlled by using the knife edge above the sample as well the secondary twin optic.

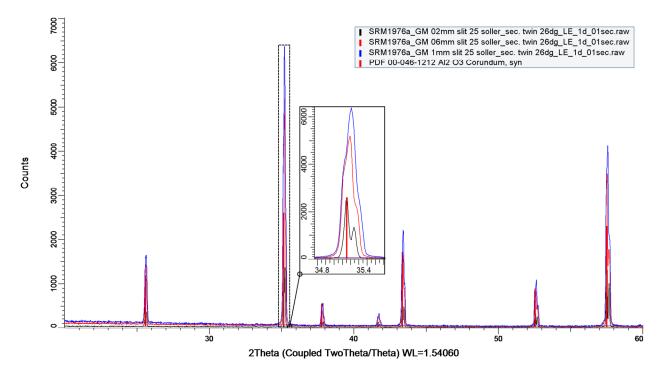

The secondary twin optic and even the empty secondary optical bench will shade part of the detector opening and removing these components will result in approximately 25% higher intensity. (Compare the red and blue scan in the plot above). The knife edge will have the largest effect on reducing the air scatter. The optimum height of the knife edge will depend on the desired measurement range. A knife edge that is adjusted too low will result in intensity loss at high angles, because it will cut into the incident beam. The height of the knife in these example scans was adjusted to exactly 1mm above the sample (using the thickness of a glass slide as a spacer between corundum plate and knife edge). Without the secondary twin optic that spacing will result in a usable 2 theta range between 4 and 70 degrees without odd background shapes at low angles or intensity loss at high angles.

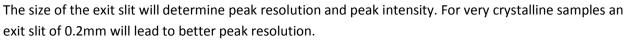

With the secondary twin optic mounted and the detector opening decreased, lower angles than 3 degrees can be a measured.

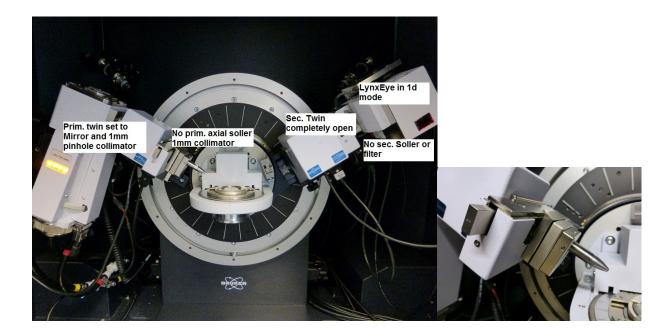
For scans where more intensity is required for better statistics to detect minor impurity phases the standard 2.5° axial Soller slits can be replaced by 4° Solller slits or the secondary axial Soller can be removed completely, if the peaks width is limited by crystallite size broadening.

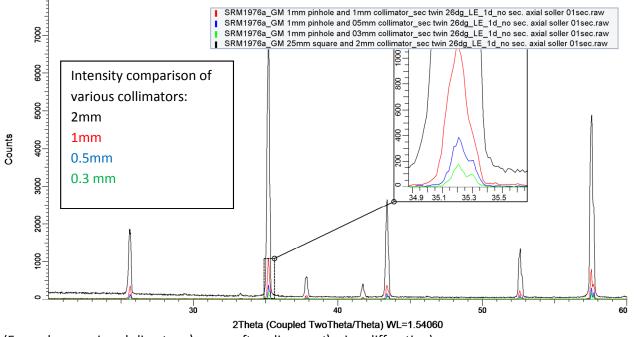
| Generator                   | 40kV40mA                                                               |
|-----------------------------|------------------------------------------------------------------------|
| Primary Twin Optic          | Twin Primary set to Goebel mirror                                      |
| Radiation safety slit       | Optional 1mm, 0.6mm or smaller depending on desired beam width         |
| Primary Axial Soller Slit   | 2.5° (or 4° for more intensity)                                        |
| Sample                      | SRM1976a                                                               |
| Knife Edge                  | Usually not necessary                                                  |
| Secondary Twin Optic        | Set to Soller 0.2°                                                     |
| Secondary Slit              | None                                                                   |
| Secondary Axial Soller Slit | 2.5° or none for more intensity                                        |
| Detector                    | LynxEye 0D set to maximum opening                                      |
| Measurement                 | Coupled TwoTheta/theta continuous scan from 20° to 60° with 0.03 steps |
|                             | and 0.1sec/step                                                        |
| Example Scan files          | \ scans after alignment\pb)                                            |

## Parallel Beam geometry on SRM 1976a (for GID or irregular shaped samples)



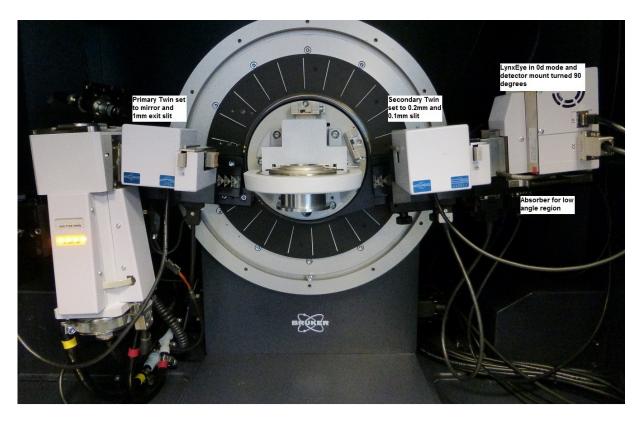





## Parallel Beam geometry on SRM1976a (for capillaries or in combination with pinholes for micro diffraction)

| Generator                   | 40kV40mA                                                              |
|-----------------------------|-----------------------------------------------------------------------|
| Primary Twin Optic          | Twin Primary set to Goebel mirror                                     |
| Radiation safety slit       | Optional 1mm, 0.6mm or 0.2mm depending on desired beam width and      |
|                             | resolution                                                            |
| Primary Axial Soller Slit   | 2.5° (or 4° for more intensity)                                       |
| Sample                      | SRM1976a                                                              |
| Knife Edge                  | Set to 1mm above sample                                               |
|                             | Two knife edges above and below sample available for capillary stages |
| Secondary Twin Optic        | Set to maximum opening or removed                                     |
| Secondary Slit              | None                                                                  |
| Secondary Axial Soller Slit | 2.5° (or 4° for more intensity)                                       |
| Detector                    | LynxEye 1D set to maximum opening                                     |
| Measurement                 | Coupled TwoTheta/theta continuous scan from 20° to 60° with 0.016     |
|                             | steps and 0.1sec/step                                                 |
| Example scan files          | in subdirectory \ scans after alignment\cap                           |



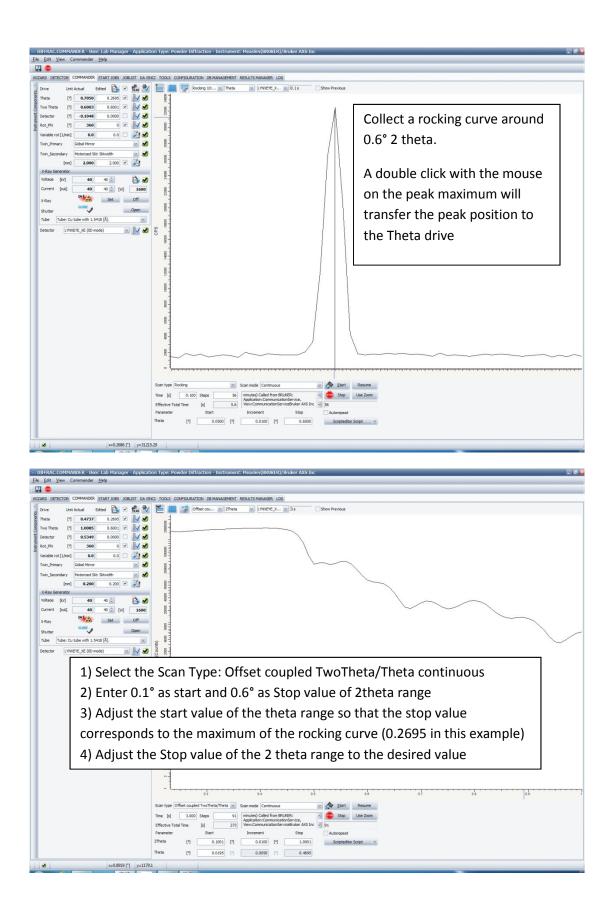







(Example scans in subdirectory \ scans after alignment\microdiffraction)

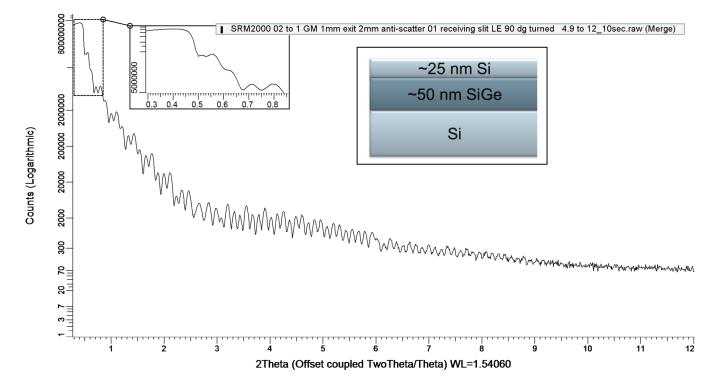
The 2mm collimator size would be suitable for texture measurements in combination with a compact cradle


## Parallel Beam geometry, XRR on SRM2000 sample

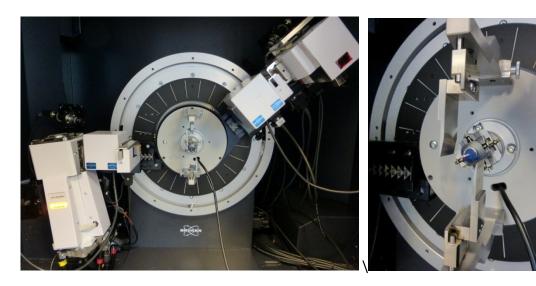


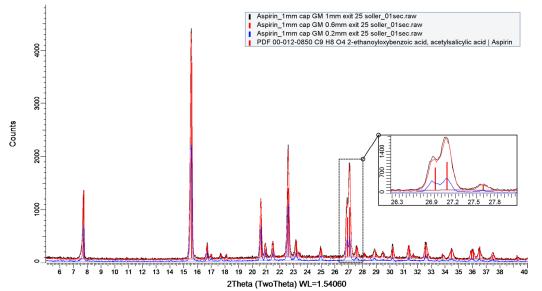
The NIST SRM2000 standard sample was mounted on a height adjustable clay slide sample holder.




To adjust the position of the sample to the beam a rocking curve around 0.6°2 theta was measured using a 0.1mm Cu absorber foil. Usually the peak occurs somewhere near the expected position of 0.3° but not exactly. If the peak is far off the expected position, remount the sample and try again. On a rotation stage the sample cannot be adjusted through z or chi scans as with a cradle system or a dedicated XRR stage. That means that mounting the sample at the right height and without tilt is critical to obtain good data.

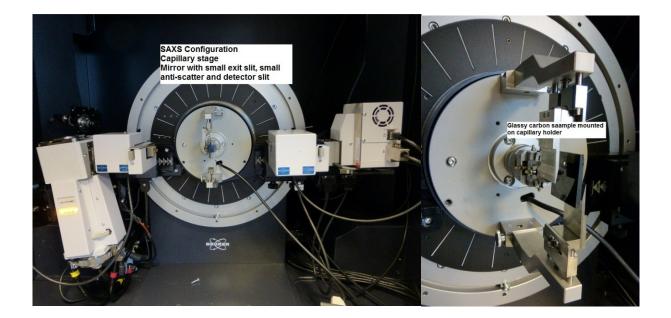



The SRM2000 data below was collected in three ranges

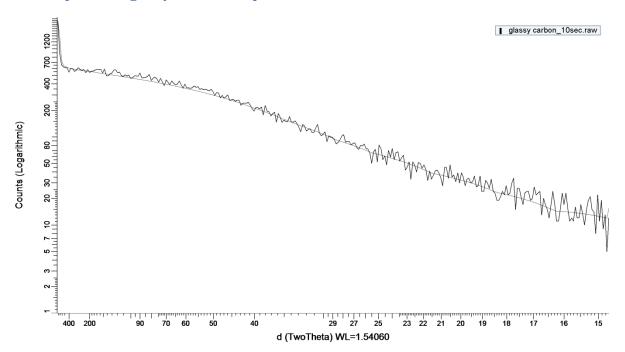

| 0.2 to 1° 2 theta  | 0.1 Cu absorber 0.01° steps, 3sec/step |
|--------------------|----------------------------------------|
| 0.9 to 5° 2 theta  | 0.01° steps, 3sec/step                 |
| 4.9 to 12° 2 theta | 0.01° steps, 10sec/step                |

(Example scans in subdirectory \ scans after alignment\XRR)

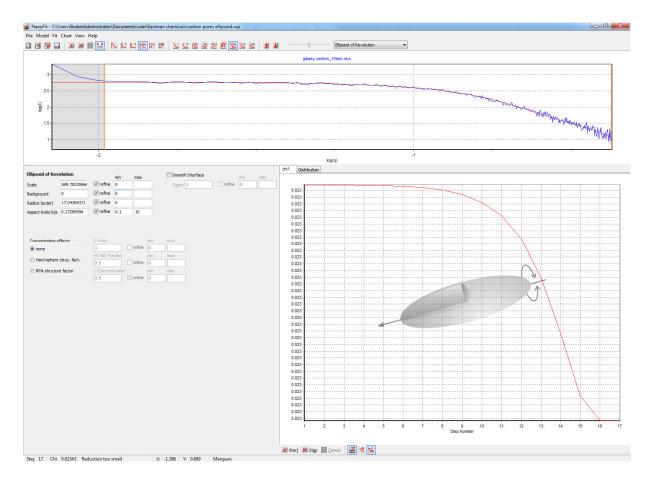



| Generator                   | 40kV40mA                                                               |
|-----------------------------|------------------------------------------------------------------------|
| Primary Twin Optic          | Twin Primary set to Goebel mirror                                      |
| Radiation safety slit       | 1mm, 0.6mm and 0.2mm                                                   |
| Primary Axial Soller Slit   | 2.5°                                                                   |
| Sample                      | 1mm glass capillary with Aspirin mounted with clay on goniometer head  |
| Knife Edge                  | Two knife edges, above and below sample                                |
| Secondary Twin Optic        | Set to maximum opening                                                 |
| Secondary Slit              | None                                                                   |
| Secondary Axial Soller Slit | 2.5°                                                                   |
| Detector                    | LynxEye 1D with 2.5° opening                                           |
| Measurement                 | TwoTheta continuous scan from 5° to 4° with 0.02 steps and 0.1sec/step |
| Example scan files          | subdirectory \ scans after alignment\Cap                               |






## SAXS on glassy carbon sample


| Generator                   | 40kV40mA                                                              |
|-----------------------------|-----------------------------------------------------------------------|
| Primary Twin Optic          | Twin Primary set to Goebel mirror                                     |
| Radiation safety slit       | 0.1mm or 0.05mm                                                       |
| Primary Axial Soller Slit   | 2.5°                                                                  |
| Sample                      | Glassy carbon with pores                                              |
| Knife Edge                  | Two knife edges above and below sample available for capillary stages |
| Secondary Twin Optic        | Set to 0.1mm                                                          |
| Secondary Slit              | 0.1mm                                                                 |
| Secondary Axial Soller Slit | None                                                                  |
| Detector                    | LynxEye 0D turned 90 degree                                           |
| Measurement                 | TwoTheta continuous scan from 0.1° to 8° with 0.02 steps and          |
|                             | 10sec/step                                                            |
| Scan files                  | in subdirectory \ scans after alignment\SAXS                          |



### Scatter profile of glassy carbon sample



#### SAXS simulation in Nanofit

