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Symbols
d tip–sample separation

e electronic charge

f (E) occupation probability for electron state with

energy E

_ Planck’s constant divided by 2p
kcant force constant of SFM cantilever

me mass of electron

Mtip mass of vibrating tip assembly

Mts matrix element connecting tip and sample

states in STM

r0 centre of curvature of STM tip

R radius of curvature

V potential energy of electron

Wts transition rate between tip and sample states

j decay constant for electron wavefunctions c
r differential conductance

U electrostatic potential

x angular frequency of vibration

X normalization volume for tip wavefunction in

the Tersoff–Hamann model

Introduction

The three most important scanning probe techniques are

� Scanning tunnelling microscopy (STM);
� Scanning force microscopy (SFM, also known as

atomic force microscopy, AFM);
� Scanning near-field optical microscopy (SNOM).

The three methods give different types of information
and require correspondingly different theoretical treat-
ments. STM probes the electronic states of a surface;
SFM probes the force (or force gradient) between a tip
and a surface; while SNOM probes the electromagnetic
field near a surface. In addition, magnetic force micro-
scopy (MFM) is now a recent addition to the range of
techniques and is covered by a separate article in this
encyclopedia.

However, all these techniques share several common
features. First, they measure local, not average, surface
properties. Any theory must therefore include the local
surface properties if it is to be useful. Second, they all
lack a simple inversion theorem: in no case is it possible to

infer directly physical properties of the system from the
scanning probe results. Interpretation therefore has to
proceed by an indirect ‘interpretation cycle’:

1. Build a model of the relevant local features (e.g.
structure, excitations) of the system under study;

2. Develop a theory of the scanning probe experiment
concerned;

3. Combine (1) and (2) to determine the predicted
experimental signal from the model adopted;

4. Alter the model if the predictions and the experiment
do not match.

In this article we shall examine what type of model of the
physical system under study is appropriate under item
(1) of the ‘interpretation cycle’ for each technique, and
how a suitable theory of the experiment can be con-
structed for item (2).

The Scanning Tunnelling Microscope:
Electronic Spectroscopy

General Considerations

The fundamental physical process in STM is the tun-
nelling of electrons between the tip and the sample under
study, through the barrier formed by the vacuum
between them (see Figure 1). The ‘height’ of this barrier
in energy is approximately equal to the work functions of
the tip or sample material. In the simplest possible one-
dimensional model, we assume that the electron potential
energy V takes a constant value V0 through the tunnelling

Figure 1 Schematic diagram of an STM junction at zero bias,

illustrating the meaning of the symbols defined in the text.
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gap; the barrier height is therefore (V0� E) where E is the
electron energy. The electron wavefunctions then decay
in the vacuum as exp(� kz), where z is the coordinate
normal to the surface and

_ 2k 2

2me
¼ ðV0 � EÞ ½1�

If V0� E is 5 eV¼ 8.01� 10�19 J then k¼ 1.15� 1010m�1

Tunnelling can occur from tip to sample and from
sample to tip. If no bias is applied to the system (i.e. if
the electrochemical potentials of the electrons in tip and
sample far from the junction are equal), the rates of
tunnelling in opposite directions are equal, and no net
current flows. (Note that if the tip and sample have
different work functions, a finite charge transfer will
occur at zero bias to establish a dipole layer at the
surfaces, and hence an electric field in the vacuum gap;
it is the potential difference arising from this field which
equalizes the electrochemical potential in the two
materials.)

Suppose now that a finite bias potential DF is applied
to the system (see Figure 2), of a sign which raises the
electrochemical potential for electrons on the left of the
junction by |e|DF relative to those on the right. Over a
range of energies, electrons are now more likely to tunnel
from left to right than viceversa, and a net current flows
from right to left. If the difference in chemical potentials
is small so that current is dominated by electrons with a
single energy E, we can use the fact that the current is
proportional to the tunnelling probability and hence to
the absolute square of the wavefunction to deduce that it
will vary with the tip–sample separation d as exp(� 2kd),
with k given by eqn [1]. Taking the value of k we
estimated earlier, we obtain the often-quoted rule of
thumb that the tunnel current should reduce by roughly
a factor of ten whenever the tunnel gap is increased by
1 Å¼ 10�10 m.

This is an approximate theory of the tunnelling pro-
cess, but it says nothing about the contrast to be expected
when the STM tip is moved across the surface. A better

theory must take account of the atomistic structure of the
tip and the surface, as well as a better theory of the
tunnelling between them. In doing this, it is important to
realize that the energy of the tunnelling electrons being
used to probe the system is very similar to the energy of
electrons in the bonding orbitals holding the atoms
together. There is therefore a very close relationship
between the tunnelling process, the electronic structure,
and the atomic (or chemical) structure of the system.

Step (1) of the ‘interpretation cycle’ for STM must
therefore involve a model of the atomic and electronic
structure of the surface, including any adsorbates or
surface defects. In practice this is most often obtained
numerically using density-functional theory, in which the
total energy of the electrons in the system is calculated
from the electronic charge density, rather than from the
full many-electron wavefunction. The Hartree–Fock
method, which employs an approximate form for the
many-electron wavefunction which neglects the corre-
lations between the motions of the electrons, is also used.
Such calculations are now relatively standard, and many
can be found in the literature for surfaces of different
types. Step (2) must involve a three-dimensional theory
of electron tunnelling between the surface (represented
in this way) and the tip; we now turn to this more difficult
step.

Perturbation Theory

The interpretation of many spectroscopies (for example,
optical spectroscopy) proceeds by the identification of a
well-defined ‘perturbation’ which is applied to the system
when the experiment is performed. This is both con-
venient (because the response of the system to the per-
turbation is not too difficult to evaluate in terms of the
matrix elements of the perturbation) and conceptually
useful (because it allows a clear separation between the
‘system’ and the ‘probe’).

This is not straightforward in STM. There are two
reasons: (i) the tip and the sample may be very close, and
hence strongly coupled together, and (ii) even when this
is not the case, there are mathematical difficulties in
separating the Hamiltonian into parts describing a non-
interacting tip and sample, because the kinetic energy
operator for the electrons appears in both parts. Never-
theless problem (ii) has been solved, and it has been
shown that a sensible perturbation theory can be con-
structed in which the appropriate matrix element is
that of the electron current density operator, evaluated
over a surface S separating the tip and the sample (see
Figure 3). We write

Mts ¼
_ 2

2ime

Z

S

d2r ctrcs � csrct½ � ½2�
Figure 2 Schematic diagram of an STM junction at finite bias.
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where ct is a one-electron state of the tip (in the absence
of the sample) and cs is a state of the sample (in the
absence of the tip). Note that in order to derive this
result, one has to assume that both states are valid solu-
tions of the Schrödinger equation in the neighbourhood
of the surface S; this implies that the potential for elec-
trons at S must be equal to the vacuum potential. The
transition rate for electrons from state t to state s (or vice
versa) can then be written

Wts ¼
2p
_

Mtsj j2dðEt � EsÞ ½3�

and the total current from tip to sample as

I ¼
X

ts

2p
_

Mtsj j2dðEt � EsÞft ðEt Þ½1� fsðEsÞ� ½4�

where ft(E) and fs(E) are the occupation probabilities for
electron states with energy E in the tip and the sample
respectively.

The most commonly used model in interpreting STM
data is the Tersoff–Hamann model, in which the analysis
is carried a step further. It is assumed that the tip
wavefunction is an s-wave, and decays into the vacuum as

ct ðrÞ ¼ O�1=2kR expðkRÞexpð�kjr � r0jÞ
kjr � r0j

½5�

where O is a normalization volume, r0 is the centre of the
curvature of the tip, R is the radius of curvature, and k is
as defined earlier. In this special case the integral in eqn
[2] can be evaluated exactly (under the assumption that
cs obeys the free-space Schrödinger equation), and one
finds in the limit of small bias that the differential

conductance s of the STM is

s ¼ 32p 3

_
e 2Nt ðEFÞR2k�4expð2kRÞ

X

S

csðr0Þj j2dðEs � EFÞ ½6�

Here Nt(EF) is the total tip density of states at the Fermi
energy. This is a very simple and important result; it tells
us that the tunnelling conductance measures the sample
density of states at the Fermi energy, evaluated at the
centre of curvature of the tip (i.e. some distance outside
the sample surface). This is relatively straightforward to
calculate, and easy to interpret in simple chemical terms.
The model disregards all details of the tip; they are
absorbed into the values of the constants R and O. The
(usually unknown) structure of the end of the tip can
therefore be disregarded, at the cost of sacrificing any
information about the absolute value of the conductance.
It is largely because of these advantages that the Tersoff–
Hamann model is so popular.

The approximations leading to eqn [6] are valid only
if there is no electric field in the vacuum. Nevertheless,
the Tersoff–Hamann model is often used to interpret
images taken at finite bias voltage DF, or even data from
the ‘spectroscopic’ mode of the STM in which the tip
position is held fixed and the bias varied. The density of
states involved in eqn [6] is projected onto a ‘window’ of
energies DE¼ eDF, rather than onto a single energy.
There is no theoretical justification for this, as the true
states of the system are bound to be modified by the
addition of such a bias voltage, but it has proved useful as
a way of qualitatively rationalizing STM data provided
the bias is not too large.

It is possible to extend perturbation theory beyond the
Tersoff–Hamann model, for example by including tun-
nelling to or from states of non-zero angular momentum
on the tip, or by using states explicitly calculated from a
particular atomistic model to find the matrix element in
eqn [2]. However, both these approaches require addi-
tional information about the geometry of the tip and the
electronic states it supports. This is generally not avail-
able from experiment, as a tip will be modified by the
forces acting in the course of the experiment (as dis-
cussed in more detail below); even if the tip is well
characterized before use (for example, by electron micro-
scopy or field-ion microscopy), this information will
become out-of-date once the experiment starts.

Another extension of this type of perturbation theory
is to the case where there is some additional electronic
order in the tip or the sample – for example, magnetic or
superconducting order. In the case of magnetic order one
is led to consider separate currents of spin-up and spin-
down electrons, proportional to the spin-resolved com-
ponents of the density of states. For a superconductor, the

Figure 3 The important quantities in the Tersoff–Hamann

model of STM. The matrix element is evaluated on the surface S;

the conductance is proportional to the sample density of states at

the tip centre of curvature r0.
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tunnel current depends on the quasiparticle density of
states.

Beyond Perturbation Theory

Perturbation theory of this kind leads to an appealing
picture of STM. Nevertheless it is not always justified;
here we list some of the reasons why it may break down.

� A substantial redistribution of charge and potential
takes place, so the effective one-electron Schrödinger
equation is altered. This effect has been predicted
theoretically when the tip–sample separation drops
below about 3 Å; it tends to result in a lowering of the
potential energy for an electron in the vacuum and a
collapse of the tunnelling barrier.

� The electron tunnelling probability between tip and
sample is not small. In practice this occurs only when
the electron transport is no longer dominated by
tunnelling – either because a physical contact or
nanojunction has been formed between the two, or
because the tunnel barrier has collapsed completely
(see above). The signature of this state of affairs is that
the STM conductance becomes of the order of the
quantum of conductance, e2/h.

� Although small, the tunnelling matrix element
through the vacuum is not the smallest energy scale in
the problem. This can occur when, for example, a
highly insulating molecule is adsorbed on a surface;
tunnelling through the molecule can then be just as
difficult as tunnelling through the vacuum, so it is not
appropriate to treat the vacuum tunnelling as a
perturbation.

For all these problems, the theoretical cure is the same:
one must perform a single coupled calculation for the
electron states in the whole system (tip plus adsorbate – if
any – plus sample) under a non-zero bias, allowing a
current to flow.

However, this has proved to be very difficult without
additional simplifications. In the elastic scattering quan-
tum chemistry (ESQC) method developed by Joachim
and Sautet, there is no self-consistency in the Hamilto-
nian for the electrons and only a relatively small basis set,
giving very limited flexibility to the electron wavefunc-
tions. In another approach, pioneered by the group of
Tsukada, a more detailed numerical representation of the
wavefunction is adopted: the wavefunctions are calcu-
lated on a mesh of points and full self-consistency is
achieved between the wavefunctions and the electronic
potential. The simplification in this case is that the
wavefunctions far from the tunnel junction are those of a
fictitious ‘jellium’ in which the positive charge of the
nuclei is smeared out into a uniform background. In yet a
third approach the conductance is calculated in a non-

perturbation manner between two localized states, rather
than between the true bulk states of the tip and sample.

Other Factors

There are also other factors that are known to be
important in STM. One of these is the mechanical
interaction between the tip and the sample; the forces
that arise can distort the tip, with the result that the
displacement of the tip apex is not the same as that
recorded from the piezoelectric actuators controlling the
tip (see Figure 4a). This effect was revealed by careful
measurements of the corrugation of the STM image of
adsorbates on metals as a function of the conductance.

A second effect is that of the tip electric field. This can
be very large: fields above 109 Vm�1 can be obtained
when a potential difference of a few volts is dropped over
a narrow tunnelling gap. This can have two results: first it
distorts the atomic structure of the surface, causing

Figure 4 Two physical phenomena which alter STM images

from those predicted by simple theory: (a) Tip–sample forces

distort the actual change in separation from that measured by the

piezoelectric transducers. (b) Electric fields from the tip cause

motion of surface atoms and distortion of surface electron states.
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movements of a few tenths of an angstrom in the surface
atoms, and second it distorts the electronic structure,
changing the tunnelling probability at different points on
the surface (see Figure 4b). These effects have been
shown to be important in images of the Si(001) surface.

A third complicating effect is the inelastic scattering
of electrons from other excitations during tunnelling.
These other excitations may be electronic; the most
important example is surface plasmons, which may be
found in either the tip or the sample. Scattering from
surface plasmons produces electromagnetic disturbances
near the tunnel gap which can result in the emission of
electromagnetic radiation from the STM. The frequency
distribution of the emitted light is then characteristic of
the surface plasmon spectrum. The distortion of the
surface plasmons can also have other, more subtle, effects
since it determines whether or not the electron experi-
ences the effect of the ‘image interaction’ outside a sur-
face. This can in turn have a large effect on the electron
potential and the tunnelling current.

Alternatively, the scattering excitations may be atomic
vibrations. These may result in phonon-assisted side-
bands around resonant tunnelling peaks, corresponding
to the absorption or emission of phonons. In extreme
cases the transfer of electronic energy to atomic motion
may produce atom transfer between tip and sample, or
even desorption; this is a form of DIET (desorption
induced by electronic transitions) and may be used to
break bonds selectively on surfaces.

The Scanning Force Microscope: Force
Spectroscopy

In order to interpret these experiments one needs to bear
in mind the different types of forces that can act between
the tip and the sample.

� At large distances the force most commonly present is
the Van der Waals force. Between two atoms the Van
der Waals force energy decays with separation z
according to the well-known z�7 law, but for a sphere
above a planar surface (one simple model for the tip–
surface system) the decay is only as z�2. This rela-
tively slow fall-off tells us that in SFM, unlike STM,
the large-scale structure of the tip is important.

� If the sample is an insulator, it may be locally charged.
The interaction between these local ‘patch charges’
and the tip also decays like a power law in the tip–
sample separation. The patch charges are difficult to
control; the highest-resolution SFM results are gen-
erally obtained on conducting samples.

� At smaller distances (of the order of 3–5 Å separation)
local interactions between the closest atoms of the tip
and sample start to become important. These include the
onset of covalent bonding, and local electrostatic forces.

� As the tip–sample separation drops below the sum of
the atomic radii of the atoms, the Pauli exclusion
principle raises the energy of the overlapping electron
distributions, producing a repulsive force. If the tip
and sample are forced together beyond this point,
atomic deformations (first elastic, then plastic) occur.

Models for the Forces

Of these interactions, the Van der Waals attraction and
the Pauli repulsion are universal; the presence of the
others depends on the nature of the material. The
combination of Van der Waals and Pauli interactions is
often captured by the simple ‘6-12’ Lennard-Jones
interatomic potential

V ðrÞ ¼ e
r

s

� ��12

� r

s

� ��6
� �

½7�

in which the attractive r�6 term represents the Van der
Waals force and the repulsive r�12 term the Pauli force.
Simulations of generic interatomic interactions are often
performed using this potential, although it cannot be
expected to be realistic for anything other than interac-
tions between the simplest rare-gas solids. More realistic
calculations include approximate forms for the electro-
static and covalent interactions between the atoms, or
(better still) find these forces directly from the electronic
structure of the materials involved.

High-Resolution SFM Operation

With this in mind, let us examine the most common
modes of SFM operation when high-resolution infor-
mation about the surface is required.

� Non-contact mode. In this mode the tip is kept at a
distance from the sample in the attractive part of the
force–distance curve; usually it is then scanned across
the sample, and the tip–sample distance adjusted to
keep the cantilever displacement (and hence the force)
constant. This procedure keeps the tip in the region
where the tip–sample force is (relatively) well
understood, but with the price that the force is
determined by the cumulative effect of a large number
of atoms – hence the resolution of individual atomic-
scale features is seldom possible.

� Contact mode. Here, by contrast, the tip is allowed to
penetrate into the repulsive regime of Figure 5. This
has the advantage that one expects a large component
of the force to be determined by a relatively small
number of atoms near the tip apex, but the dis-
advantage that the force becomes dependent on
complex atomic processes involving the irreversible
deformation of the tip–sample junction. Images with
apparent atomic resolution can be seen in contact
mode on simple crystalline materials such as alkali
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halides, but the conclusion of careful simulations is
that the atomic-scale features are not, in fact, corre-
lated with the positions of atoms in the surface. This
theoretical conclusion is reinforced by the failure to
resolve atomic defects (known to be present on the
surface) in experiments.

One might think that a technique intermediate between
contact and non-contact modes could be devised simply
by bringing the tip close to the surface, but not in contact
with it. In fact this is very difficult because of the ‘jump-
to-contact’ phenomenon: a static tip held above a surface
by an SFM cantilever with a given force constant kcant
can be stable only as long as the force gradient from the
tip–sample interaction is less than kcant (see Figure 5).
The force gradient of a Van der Waals interaction
between a tip and a flat surface diverges as the separation
between them is reduced, so this condition is always
violated and the tip snaps into contact with the sample. If
the tip is pulled off the surface, a similar jump out of
contact occurs (although between different values of tip–
sample separation).

Since a very interesting range of tip–surface separa-
tions is rendered unavailable by the jump to contact, it
would be desirable to eliminate it. To date, this has been
done in two ways. First, a dynamical approach is used: the
cantilever is vibrated above the surface with an amplitude
of several hundred angströms, in such a way that its point
of closest approach is only a few angströms from the
surface. The difference from before is that the tip is
accelerating rapidly away from the surface as it approa-
ches; this suppresses the jump to contact. One way of
expressing this is to say that the effective cantilever force
constant is increased from kcant to kcant þ Mtipo

2, where
Mtip is the total mass of the vibrating tip and o is the

angular frequency of vibration. The tip is usually scanned
while keeping the vibrational period constant; this corre-
sponds approximately to a scan of constant force gradient.
Atomic resolution has been obtained using this technique,
initially on the Si(111)–7� 7 surface but now also on
others. It seems this resolution can be understood in terms
of the interaction between the tip and the surface near the
point of closest approach, but the theory is complicated
because the vibration of the tip samples all the different
regions of the potential surface described above during a
cycle, so a unified model containing all of them must be
used.

A second approach is to control the force on the tip
directly, generally by means of a small magnet mounted
on the back. This removes the need to model a compli-
cated tip oscillation, but imposes stringent demands on
the response and stability of the electronics controlling
the force. Direct measurements of tip–sample potential
curves have now been reported using this technique, but
comparison with theory is still in its infancy.

Measurements of Elastic Properties

If local but not ultra-high-resolution measurements are
required to probe the elastic properties of a hard mate-
rial, there are advantages in using high-frequency
measurements.

The Scanning Near-Field Optical
Microscope-Optical Spectroscopy

The theory of scanning near-field optical microscopy is
somewhat similar to that of STM, with the transport of
light (or photons) replacing the transport of electrical
current (electrons). Instead of the Schrödinger equation,
the Maxwell equations for the electromagnetic field must
be solved near the tip and the sample, taking into account
the local electromagnetic properties of each medium. In
some respects this is easier, because (in the absence of
non-linear media) the Maxwell equations are truly linear
and no self-consistency (of the type needed between
effective one-electron wavefunctions and the potential) is
needed. Also, since the characteristic wavelengths and
decay lengths for optical photons are much larger than
atomic dimensions, a continuum treatment of the tip and
sample materials is almost always sufficient. On the other
hand, the Maxwell equations require treatment of two
coupled vector fields.

As in the STM case, the equations must in practice be
solved numerically. Perturbation theory is seldom
employed, and most calculations make a direct solution
for the optical modes at a fixed frequency, either by a
transfer matrix approach, or by using the Dyson equation
to obtain the solution from that of an exactly soluble
system (for example, free space).

Figure 5 Schematic force–distance curve for an SFM

experiment. On approach, the tip jumps from point a to point b; on

retraction, it jumps from c to d. The dotted lines have a slope

equal to the cantilever force constant kcant.

2486 Scanning Probe Microscopy, Theory



Conclusions

STM appears to be the most subtle of the scanning probe
methods, relying as it does on quantum-mechanical
tunnelling. In fact the theory for this technique is the best
developed of all the scanning probe family, but much
progress remains to be made in accounting correctly for
the nature of the tip and for tip–sample interactions. The
theory of near-field optical microscopy is similar in spirit,
and in some ways more straightforward. The under-
standing of SFM data is very incomplete, particularly for
experiments with resolution on the atomic scale.

See also: Magnetic Force Microscopy, Scanning Probe

Microscopes, Scanning Probe Microscopy, Applications,

Surface Plasmon Resonance, Applications, Surface

Plasmon Resonance, Instrumentation,Surface Plasmon

Resonance, Theory.
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