

# Estimating Crystallite Size Using XRD

Scott A Speakman, Ph.D.

13-4009A

speakman@mit.edu

http://prism.mit.edu/xray

### Warning

- These slides have not been extensively proof-read, and therefore may contain errors.
- While I have tried to cite all references, I may have missed some— these slides were prepared for an informal lecture and not for publication.
- If you note a mistake or a missing citation, please let me know and I will correct it.
- I hope to add commentary in the notes section of these slides, offering additional details. However, these notes are incomplete so far.

### Goals of Today's Lecture

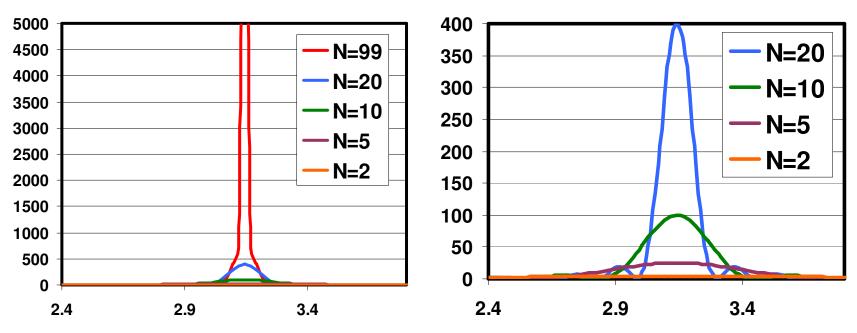
- Provide a quick overview of the theory behind peak profile analysis
- Discuss practical considerations for analysis
- Demonstrate the use of lab software for analysis
  - empirical peak fitting using MDI Jade
  - Rietveld refinement using HighScore Plus
- Discuss other software for peak profile analysis
- Briefly mention other peak profile analysis methods
  - Warren Averbach Variance method
  - Mixed peak profiling
  - whole pattern
- Discuss other ways to evaluate crystallite size
- Assumptions: you understand the basics of crystallography, X-ray diffraction, and the operation of a Bragg-Brentano diffractometer



### A Brief History of XRD

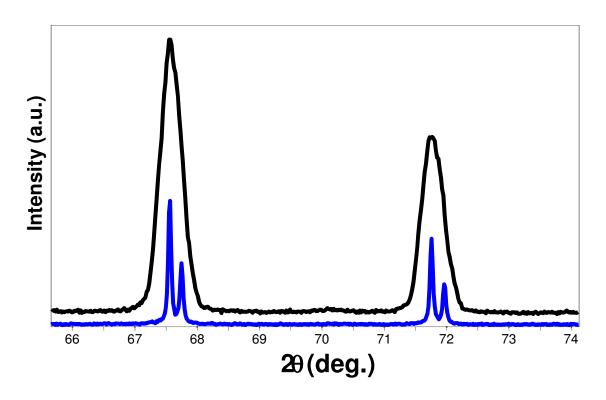
- 1895- Röntgen publishes the discovery of X-rays
- 1912- Laue observes diffraction of X-rays from a crystal
- when did Scherrer use X-rays to estimate the crystallite size of nanophase materials?

### The Scherrer Equation was published in 1918


$$B(2\theta) = \frac{K\lambda}{L\cos\theta}$$

- Peak width (B) is inversely proportional to crystallite size (L)
- P. Scherrer, "Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen," *Nachr. Ges. Wiss. Göttingen* 26 (1918) pp 98-100.
- J.I. Langford and A.J.C. Wilson, "Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size," *J. Appl. Cryst.* 11 (1978) pp 102-113.

### The Laue Equations describe the intensity of a diffracted peak from a single parallelopipeden crystal


$$I = I_e F^2 \frac{\sin^2(\pi/\lambda)(s - s_o) \cdot N_1 a_1}{\sin^2(\pi/\lambda)(s - s_o) \cdot a_1} \frac{\sin^2(\pi/\lambda)(s - s_o) \cdot N_2 a_2}{\sin^2(\pi/\lambda)(s - s_o) \cdot a_2} \frac{\sin^2(\pi/\lambda)(s - s_o) \cdot N_3 a_3}{\sin^2(\pi/\lambda)(s - s_o) \cdot a_3}$$

- N<sub>1</sub>, N<sub>2</sub>, and N<sub>3</sub> are the number of unit cells along the a<sub>1</sub>, a<sub>2</sub>, and a<sub>3</sub> directions
- When N is small, the diffraction peaks become broader
- The peak area remains constant independent of N





# Which of these diffraction patterns comes from a nanocrystalline material?



- These diffraction patterns were produced from the <u>exact same sample</u>
- Two different diffractometers, with different optical configurations, were used
- The apparent peak broadening is due solely to the instrumentation



# Many factors may contribute to the observed peak profile

- Instrumental Peak Profile
- Crystallite Size
- Microstrain
  - Non-uniform Lattice Distortions
  - Faulting
  - Dislocations
  - Antiphase Domain Boundaries
  - Grain Surface Relaxation
- Solid Solution Inhomogeneity
- Temperature Factors
- The peak profile is a convolution of the profiles from all of these contributions



## Instrument and Sample Contributions to the Peak Profile must be Deconvoluted

- In order to analyze crystallite size, we must deconvolute:
  - Instrumental Broadening FW(I)
    - also referred to as the Instrumental Profile, Instrumental FWHM Curve, Instrumental Peak Profile
  - Specimen Broadening FW(S)
    - also referred to as the Sample Profile, Specimen Profile
- We must then separate the different contributions to specimen broadening
  - Crystallite size and microstrain broadening of diffraction peaks

#### **Contributions to Peak Profile**

- 1. Peak broadening due to crystallite size
- 2. Peak broadening due to the instrumental profile
- 3. Which instrument to use for nanophase analysis
- 4. Peak broadening due to microstrain
  - the different types of microstrain
- Peak broadening due to solid solution inhomogeneity and due to temperature factors

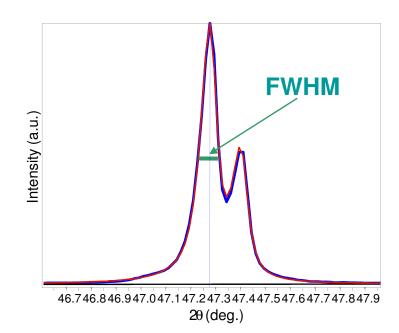
### **Crystallite Size Broadening**

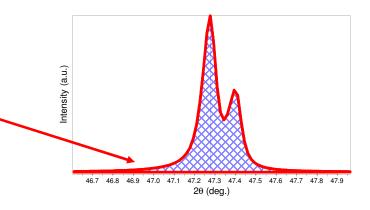
$$B(2\theta) = \frac{K\lambda}{L\cos\theta}$$

- Peak Width due to crystallite size varies inversely with crystallite size
  - as the crystallite size gets smaller, the peak gets broader
- The peak width varies with  $2\theta$  as  $\cos \theta$ 
  - The crystallite size broadening is most pronounced at large angles
     2Theta
    - However, the instrumental profile width and microstrain broadening are also largest at large angles 2theta
    - peak intensity is usually weakest at larger angles 2theta
  - If using a single peak, often get better results from using diffraction peaks between 30 and 50 deg 2theta
    - below 30deg 2theta, peak asymmetry compromises profile analysis

#### The Scherrer Constant, K

$$B(2\theta) = \frac{K\lambda}{L\cos\theta} \qquad B(2\theta) = \frac{0.94\lambda}{L\cos\theta}$$


- The constant of proportionality, K (the Scherrer constant) depends on the how the width is determined, the shape of the crystal, and the size distribution
  - the most common values for K are:
    - 0.94 for FWHM of spherical crystals with cubic symmetry
    - 0.89 for integral breadth of spherical crystals w/ cubic symmetry
    - 1, because 0.94 and 0.89 both round up to 1
  - K actually varies from 0.62 to 2.08
- For an excellent discussion of K, refer to JI Langford and AJC Wilson, "Scherrer after sixty years: A survey and some new results in the determination of crystallite size," *J. Appl. Cryst.* 11 (1978) p102-113.


# Factors that affect K and crystallite size analysis

- how the peak width is defined
- how crystallite size is defined
- the shape of the crystal
- the size distribution

#### Methods used in Jade to Define Peak Width

- Full Width at Half Maximum (FWHM)
  - the width of the diffraction peak, in radians, at a height half-way between background and the peak maximum
- Integral Breadth
  - the total area under the peak divided by the peak height
  - the width of a rectangle having the same area and the same height as the peak
  - requires very careful evaluation of the tails of the peak and the background







### **Integral Breadth**

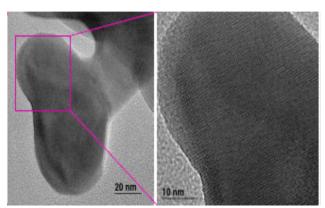
$$\beta(2\theta) = \frac{\lambda}{L\cos\theta}$$

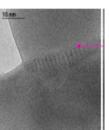
- Warren suggests that the Stokes and Wilson method of using integral breadths gives an evaluation that is independent of the distribution in size and shape
  - L is a volume average of the crystal thickness in the direction normal to the reflecting planes
  - The Scherrer constant K can be assumed to be 1
- Langford and Wilson suggest that even when using the integral breadth, there is a Scherrer constant K that varies with the shape of the crystallites

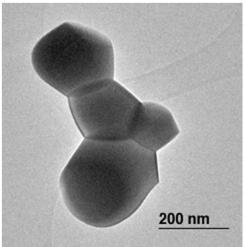
### Other methods used to determine peak width

- These methods are used in more the variance methods, such as Warren-Averbach analysis
  - Most often used for dislocation and defect density analysis of metals
  - Can also be used to determine the crystallite size distribution
  - Requires no overlap between neighboring diffraction peaks
- Variance-slope
  - the slope of the variance of the line profile as a function of the range of integration
- Variance-intercept
  - negative initial slope of the Fourier transform of the normalized line profile




### How is Crystallite Size Defined


- Usually taken as the cube root of the volume of a crystallite
  - assumes that all crystallites have the same size and shape
- For a distribution of sizes, the mean size can be defined as
  - the mean value of the cube roots of the individual crystallite volumes
  - the cube root of the mean value of the volumes of the individual crystallites
- **Scherrer** method (using FWHM) gives the ratio of the root-mean-fourth-power to the root-mean-square value of the thickness
- Stokes and Wilson method (using integral breadth) determines the volume average of the thickness of the crystallites measured perpendicular to the reflecting plane
- The variance methods give the ratio of the total volume of the crystallites to the total area of their projection on a plane parallel to the reflecting planes



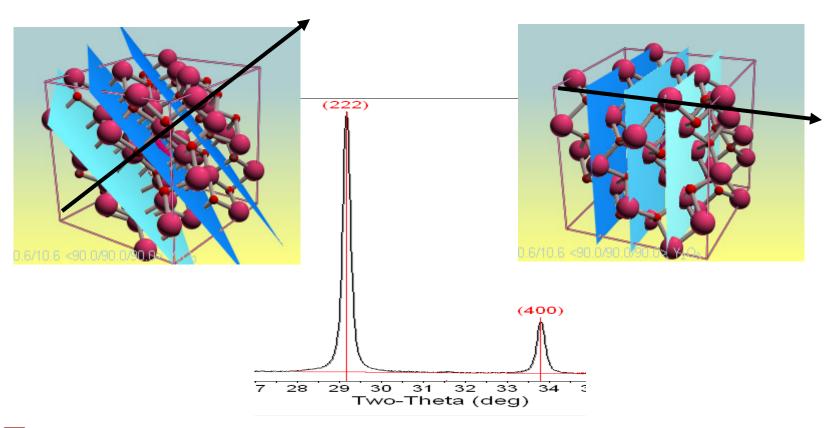

### Remember, Crystallite Size is Different than Particle Size

- A particle may be made up of several different crystallites
- Crystallite size often matches grain size, but there are exceptions









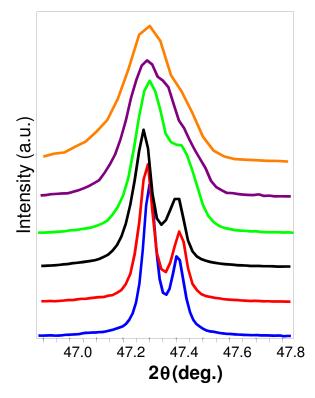

### **Crystallite Shape**

- Though the shape of crystallites is usually irregular, we can often approximate them as:
  - sphere, cube, tetrahedra, or octahedra
  - parallelepipeds such as needles or plates
  - prisms or cylinders
- Most applications of Scherrer analysis assume spherical crystallite shapes
- If we know the average crystallite shape from another analysis, we can select the proper value for the Scherrer constant K
- Anistropic peak shapes can be identified by anistropic peak broadening
  - if the dimensions of a crystallite are 2x \* 2y \* 200z, then (h00) and (0k0) peaks will be more broadened then (00l) peaks.

### **Anistropic Size Broadening**

 The broadening of a single diffraction peak is the product of the crystallite dimensions in the direction perpendicular to the planes that produced the diffraction peak.






### **Crystallite Size Distribution**

- is the crystallite size narrowly or broadly distributed?
- is the crystallite size unimodal?
- XRD is poorly designed to facilitate the analysis of crystallites with a broad or multimodal size distribution
- Variance methods, such as Warren-Averbach, can be used to quantify a unimodal size distribution
  - Otherwise, we try to accommodate the size distribution in the Scherrer constant
  - Using integral breadth instead of FWHM may reduce the effect of crystallite size distribution on the Scherrer constant K and therefore the crystallite size analysis

#### **Instrumental Peak Profile**

- A large crystallite size, defect-free powder specimen will still produce diffraction peaks with a finite width
- The peak widths from the instrument peak profile are a convolution of:
  - X-ray Source Profile
    - Wavelength widths of Kα<sub>1</sub> and Kα<sub>2</sub> lines
    - Size of the X-ray source
    - Superposition of  $K\alpha_1$  and  $K\alpha_2$  peaks
  - Goniometer Optics
    - Divergence and Receiving Slit widths
    - Imperfect focusing
    - · Beam size
    - Penetration into the sample



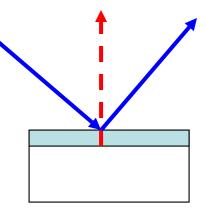
Patterns collected from the same sample with different instruments and configurations at MIT

#### What Instrument to Use?

- The instrumental profile determines the upper limit of crystallite size that can be evaluated
  - if the Instrumental peak width is much larger than the broadening due to crystallite size, then we cannot accurately determine crystallite size
  - For analyzing larger nanocrystallites, it is important to use the instrument with the smallest instrumental peak width
- Very small nanocrystallites produce weak signals
  - the specimen broadening will be significantly larger than the instrumental broadening
  - the signal:noise ratio is more important than the instrumental profile

# Comparison of Peak Widths at 47° 20 for Instruments and Crystallite Sizes

| Configuration                          | FWHM<br>(deg) | Pk Ht to<br>Bkg<br>Ratio |
|----------------------------------------|---------------|--------------------------|
| Rigaku, LHS, 0.5° DS, 0.3mm RS         | 0.076         | 528                      |
| Rigaku, LHS, 1° DS, 0.3mm RS           | 0.097         | 293                      |
| Rigaku, RHS, 0.5° DS, 0.3mm RS         | 0.124         | 339                      |
| Rigaku, RHS, 1° DS, 0.3mm RS           | 0.139         | 266                      |
| X'Pert Pro, High-speed, 0.25° DS       | 0.060         | 81                       |
| X'Pert Pro, High-speed, 0.5° DS        | 0.077         | 72                       |
| X'Pert, 0.09° Parallel Beam Collimator | 0.175         | 50                       |
| X'Pert, 0.27° Parallel Beam Collimator | 0.194         | 55                       |


| Crystallite<br>Size | FWHM<br>(deg) |
|---------------------|---------------|
| 100 nm              | 0.099         |
| 50 nm               | 0.182         |
| 10 nm               | 0.871         |
| 5 nm                | 1.745         |

- Rigaku XRPD is better for very small nanocrystallites, <80 nm (upper limit 100 nm)</li>
- PANalytical X'Pert Pro is better for larger nanocrystallites, <150 nm</li>

### Other Instrumental Considerations for Thin Films

- The irradiated area greatly affects the intensity of high angle diffraction peaks
  - GIXD or variable divergence slits on the PANalytical X'Pert Pro will maintain a constant irradiated area, increasing the signal for high angle diffraction peaks
  - both methods increase the instrumental FWHM

- Bragg-Brentano geometry only probes crystallite dimensions through the thickness of the film
  - in order to probe lateral (in-plane) crystallite sizes,
     need to collect diffraction patterns at different tilts
  - this requires the use of parallel-beam optics on the PANalytical X'Pert Pro, which have very large FWHM and poor signal:noise ratios

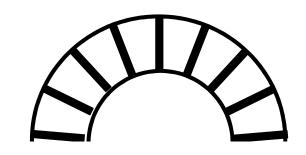


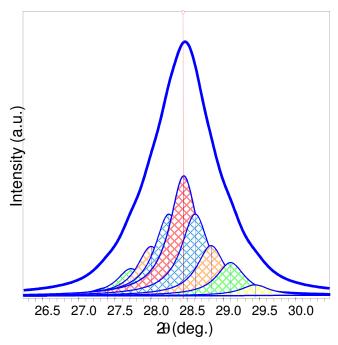


### Microstrain Broadening

- lattice strains from displacements of the unit cells about their normal positions
- often produced by dislocations, domain boundaries, surfaces etc.
- microstrains are very common in nanocrystalline materials
- the peak broadening due to microstrain will vary as:

$$B(2\theta) = 4\varepsilon \frac{\sin \theta}{\cos \theta}$$


compare to peak broadening due to crystallite size:  $B(2\theta) = \frac{K\lambda}{L\cos\theta}$ 

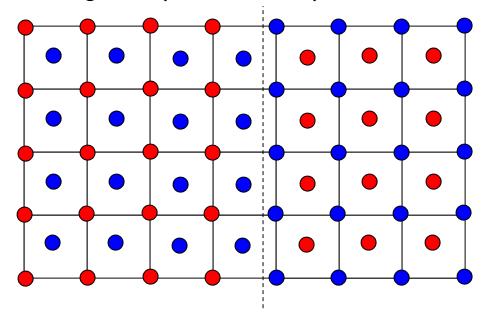

### **Contributions to Microstrain Broadening**

- Non-uniform Lattice Distortions
- Dislocations
- Antiphase Domain Boundaries
- Grain Surface Relaxation
- Other contributions to broadening
  - faulting
  - solid solution inhomogeneity
  - temperature factors

#### **Non-Uniform Lattice Distortions**

- Rather than a single d-spacing, the crystallographic plane has a distribution of d-spaces
- This produces a broader observed diffraction peak
- Such distortions can be introduced by:
  - surface tension of nanocrystals
  - morphology of crystal shape, such as nanotubes
  - interstitial impurities








http://prism.mit.edu/xray

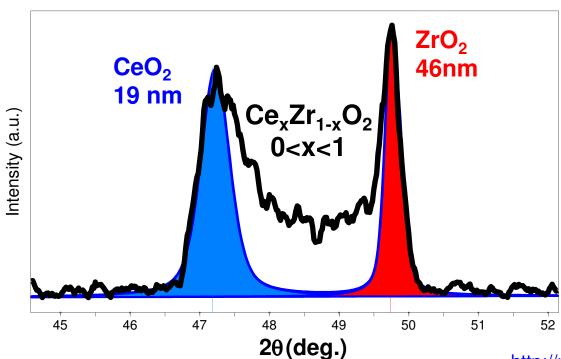
### **Antiphase Domain Boundaries**

- Formed during the ordering of a material that goes through an order-disorder transformation
- The fundamental peaks are not affected
- the superstructure peaks are broadened
  - the broadening of superstructure peaks varies with hkl



#### **Dislocations**

- Line broadening due to dislocations has a strong hkl dependence
- The profile is Lorentzian
- Can try to analyze by separating the Lorentzian and Gaussian components of the peak profile
- Can also determine using the Warren-Averbach method
  - measure several orders of a peak
    - 001, 002, 003, 004, ...
    - 110, 220, 330, 440, ...
  - The Fourier coefficient of the sample broadening will contain
    - an order independent term due to size broadening
    - an order dependent term due to strain




### **Faulting**

- Broadening due to deformation faulting and twin faulting will convolute with the particle size Fourier coefficient
  - The particle size coefficient determined by Warren-Averbach analysis actually contains contributions from the crystallite size and faulting
  - the fault contribution is hkl dependent, while the size contribution should be hkl independent (assuming isotropic crystallite shape)
  - the faulting contribution varies as a function of hkl dependent on the crystal structure of the material (fcc vs bcc vs hcp)
  - See Warren, 1969, for methods to separate the contributions from deformation and twin faulting

### **Solid Solution Inhomogeneity**

- Variation in the composition of a solid solution can create a distribution of d-spacing for a crystallographic plane
  - Similar to the d-spacing distribution created from microstrain due to non-uniform lattice distortions





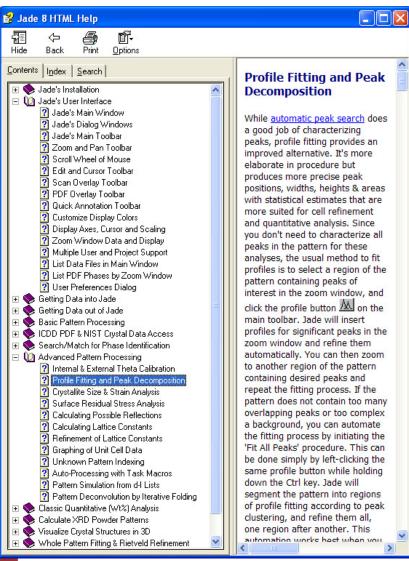
http://prism.mit.edu/xray

### **Temperature Factor**

- The Debye-Waller temperature factor describes the oscillation of an atom around its average position in the crystal structure
- The thermal agitation results in intensity from the peak maxima being redistributed into the peak tails
  - it does not broaden the FWHM of the diffraction peak, but it does broaden the integral breadth of the diffraction peak
- The temperature factor increases with 2Theta
- The temperature factor must be convoluted with the structure factor for each peak
  - different atoms in the crystal may have different temperature factors
  - each peak contains a different contribution from the atoms in the crystal

$$F = f \exp(-M) \qquad M = 2\pi^2 \left(\frac{\Delta X / \sqrt{3}}{d}\right)^2$$

# Determining the Sample Broadening due to crystallite size

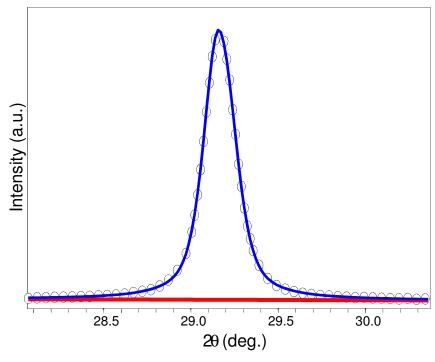

- The sample profile FW(S) can be deconvoluted from the instrumental profile FW(I) either numerically or by Fourier transform
- In Jade size and strain analysis
  - you individually profile fit every diffraction peak
  - deconvolute FW(I) from the peak profile functions to isolate FW(S)
  - execute analyses on the peak profile functions rather than on the raw data
- Jade can also use iterative folding to deconvolute FW(I) from the entire observed diffraction pattern
  - this produces an entire diffraction pattern without an instrumental contribution to peak widths
  - this does not require fitting of individual diffraction peaks
  - folding increases the noise in the observed diffraction pattern
- Warren Averbach analyses operate on the Fourier transform of the diffraction peak
  - take Fourier transform of peak profile functions or of raw data



### **Analysis using MDI Jade**

- The data analysis package Jade is designed to use empirical peak profile fitting to estimate crystallite size and/or microstrain
- Three Primary Components
  - Profile Fitting Techniques
  - Instrumental FWHM Curve
  - Size & Strain Analysis
    - Scherrer method
    - Williamson-Hall method

### Important Chapters in Jade Help




- Jade's User Interface
  - User Preferences Dialog
- Advanced Pattern Processing
  - Profile Fitting and Peak
     Decomposition
  - Crystallite Size & Strain Analysis

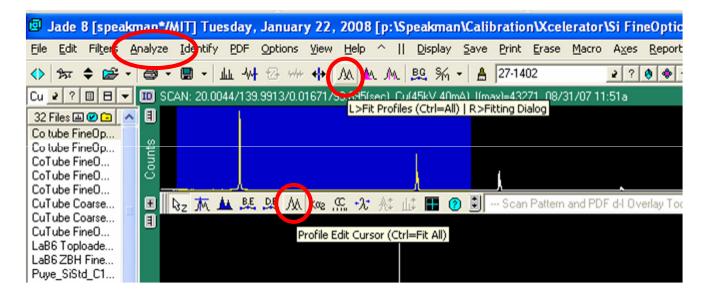


## **Profile Fitting**

- Empirically fit experimental data with a series of equations
  - fit the diffraction peak using the profile function
  - fit background, usually as a linear segment
    - this helps to separate intensity in peak tails from background
- To extract information, operate explicitly on the equation rather than numerically on the raw data
- Profile fitting produces precise peak positions, widths, heights, and areas with statistically valid estimates



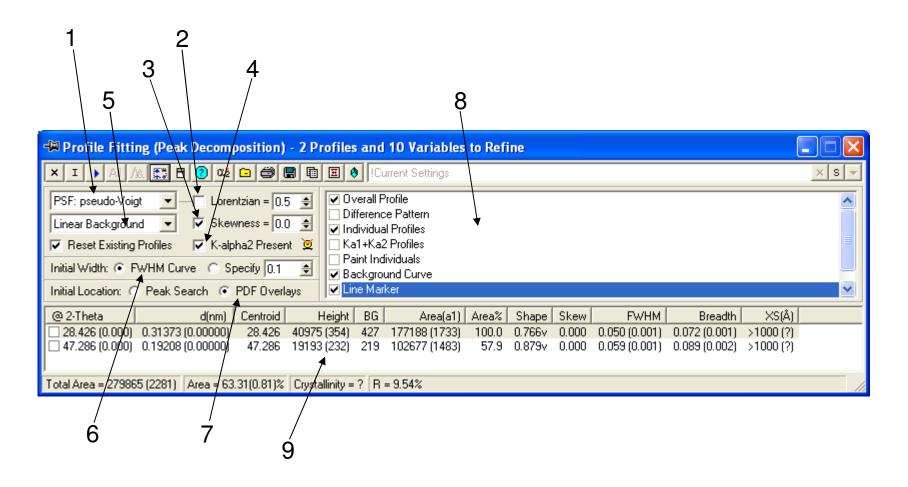
#### **Profile Functions**


- Diffraction peaks are usually the convolution of Gaussian and Lorentzian components
- Some techniques try to deconvolute the Gaussian and Lorentzian contributions to each diffraction peak; this is very difficult
- More typically, data are fit with a profile function that is a pseudo-Voigt or Pearson VII curve
  - pseudo-Voigt is a linear combination of Gaussian and Lorentzian components
    - a true Voigt curve is a convolution of the Gaussian and Lorentzian components; this is more difficult to implement computationally
  - Pearson VII is an exponential mixing of Gaussian and Lorentzian components
- SA Howard and KD Preston, "Profile Fitting of Powder Diffraction Patterns,", <u>Reviews in Mineralogy vol 20: Modern Powder Diffraction</u>, Mineralogical Society of America, Washington DC, 1989.

## Important Tips for Profile Fitting

- Do not process the data before profile fitting
  - do not smooth the data
  - do not fit and remove the background
  - do not strip Ka<sub>2</sub> peaks
- Load the appropriate PDF reference patterns for your phases of interest
- Zoom in so that as few peaks as possible, plus some background, is visible
  - Fit as few peaks simultaneously as possible
  - preferably fit only 1 peak at a time
- Constrain variables when necessary to enhance the stability of the refinement

## To Access the Profile Fitting Dialogue Window


- Menu: Analyze > Fit Peak Profile
- Right-click Fit Profiles button
- Right-click Profile Edit Cursor button





- open Ge103.xrdml
- overlay PDF reference pattern 04-0545
- Demonstrate profile fitting of the 5 diffraction peaks
  - fit one at a time
  - fit using 'All' option

## Important Options in Profile Fitting Window



## 1. Profile Shape Function

- select the equation that will be used to fit diffraction peaks
- Gaussian:
  - more appropriate for fitting peaks with a rounder top
  - strain distribution tends to broaden the peak as a Gaussian
- Lorentzian:
  - more appropriate for fitting peaks with a sharper top
  - size distribution tends to broaden the peak as a Lorentzian
  - dislocations also create a Lorentzian component to the peak broadening
- The instrumental profile and peak shape are often a combination of Gaussian and Lorentzian contributions
- pseudo-Voigt:
  - emphasizes Guassian contribution
  - preferred when strain broadening dominates
- Pearson VII:
  - emphasize Lorentzian contribution
  - preferred when size broadening dominates

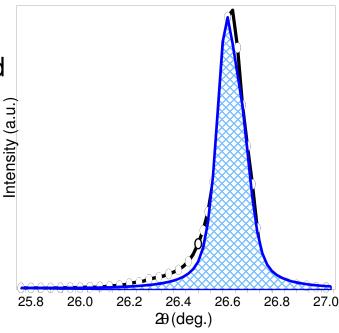




## 2. Shape Parameter

- This option allows you to constrain or refine the shape parameter
  - the shape parameter determines the relative contributions of Gaussian and Lorentzian type behavior to the profile function
- shape parameter is different for pseudo-Voigt and Pearson VII functions
  - pseudo-Voigt: sets the Lorentzian coefficient
  - Pearson VII: set the exponent
- Check the box if you want to constrain the shape parameter to a value
  - input the value that you want for the shape parameter in the numerical field
- Do not check the box if you want the mixing parameter to be refined during profile fitting
  - this is the much more common setting for this option



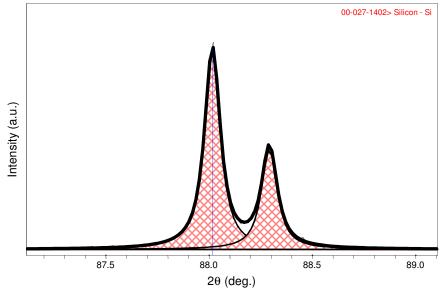


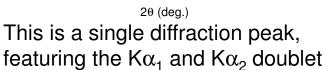



### 3. Skewness

- Skewness is used to model asymmetry in the diffraction peak
  - Most significant at low values of 2θ
- Unchecked: skewness will be refined during profile fitting
- Checked: skewness will be constrained to the value indicated
  - usually check this option to constrain skewness to 0
  - skewness=0 indicates a symmetrical peak
- Hint: constrain skewness to zero when
  - refining very broad peaks
  - refining very weak peaks
  - refining several heavily overlapping peaks





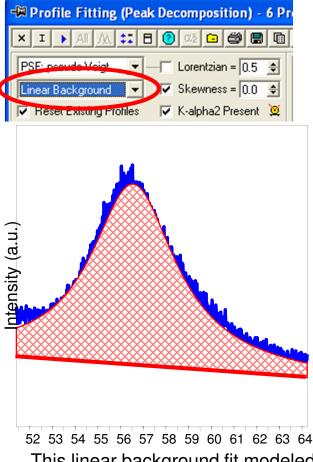


an example of the error created when fitting low angle asymmetric data with a skewness=0 profile



## 4. K-alpha2 contribution

- Checking this box indicates that  $K\alpha_2$  radiation is present and should be included in the peak profile model
  - this should almost always be checked when analyzing your data
- It is much more accurate to model  $K\alpha_2$  than it is to numerically strip the  $K\alpha_2$  contribution from the experimental data



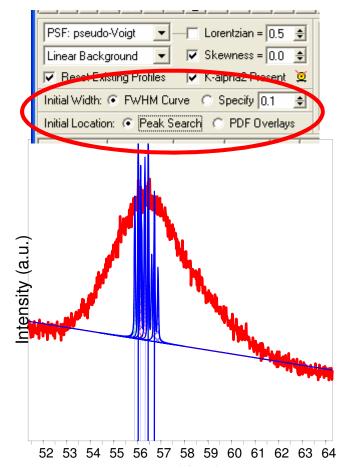







## 5. Background function

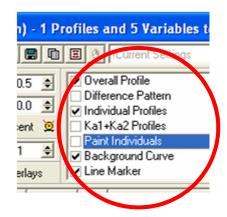
- Specifies how the background underneath the peak will be modeled
  - usually use "Linear Background"
  - "Level Background" is appropriate if the background is indeed fairly level and the broadness of the peak causes the linear background function to fit improperly
  - manually fit the background (Analyze >
     Fit Background) and use "Fixed
     Background" for very complicated
     patterns
  - more complex background functions will usually fail when fitting nanocrystalline materials



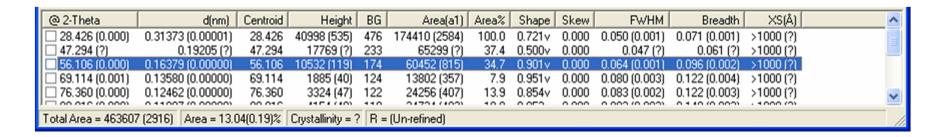

This linear background fit modeled the background too low. A level fit would not work, so the fixed background must be used.



# 6. Initial Peak Width7. Initial Peak Location

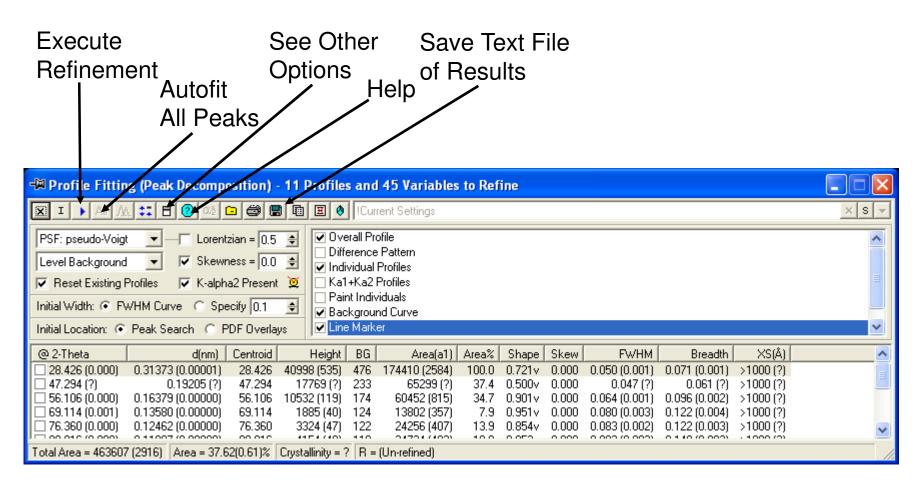

- These setting determine the way that Jade calculates the initial peak profile, before refinement
- Initial Width
  - if the peak is not significantly broadened by size or strain, then use the FWHM curve
  - if the peak is significantly broadened, you might have more success if you <u>Specify</u> a starting FWHM
- Initial Location
  - using PDF overlays is always the preferred option
  - if no PDF reference card is available, and the peak is significantly broadened, then you will want to manually insert peaks- the Peak Search will not work




Result of auto insertion using peak search and FWHM curve on a nanocrystalline broadened peak. Manual peak insertion should be used instead.

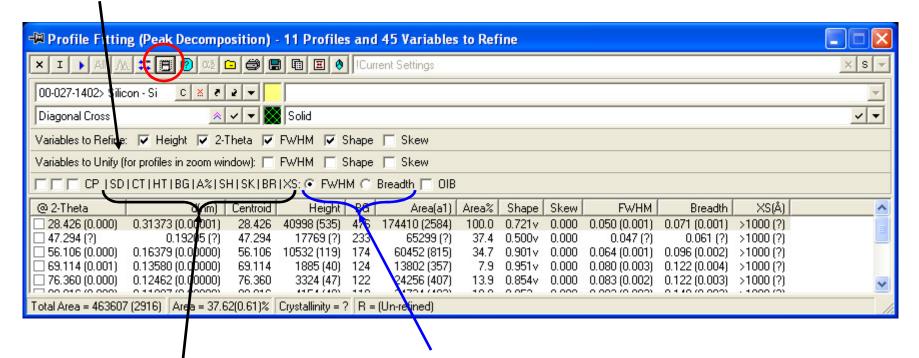
## 8. Display Options

- Check the options for what visual components you want displayed during the profile fitting
  - Typically use:
    - Overall Profile
    - Individual Profiles
    - Background Curve
    - Line Marker
  - Sometimes use:
    - Difference Pattern
    - Paint Individuals




## 9. Fitting Results




- This area displays the results for profile fit peaks
- Numbers in () are estimated standard deviations (ESD)
  - if the ESD is marked with (?), then that peak profile function has not yet been refined
- Click once on a row, and the Main Display Area of Jade will move to show you that peak, and a blinking cursor will highlight that peak
- You can sort the peak fits by any column by clicking on the column header

#### Other buttons of interest

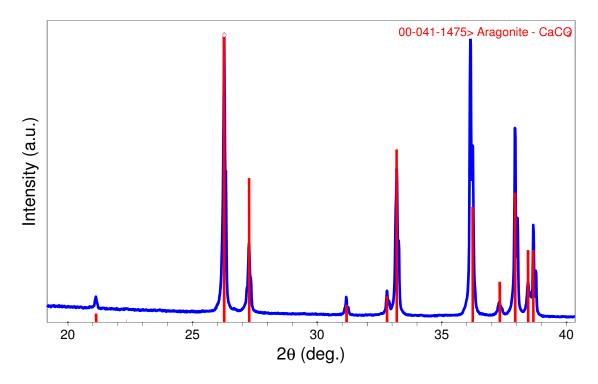


## **Clicking Other Options**

Unify Variables: force all peaks to be fit using the same profile parameter



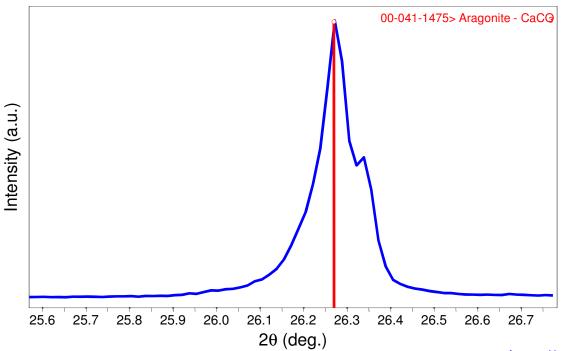
Select What Columns to Show in the Results Area


**Use FWHM or Integral Breadth for Crystallite Size Analysis** 



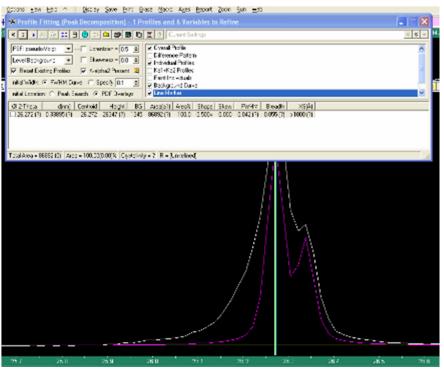
# Procedure for Profile Fitting a Diffraction Pattern

- Open the diffraction pattern
- 2. Overlay the PDF reference
- 3. Zoom in on first peak(s) to analyze
- 4. Open the profile fitting dialogue to configure options
- 5. Refine the profile fit for the first peak(s)
- 6. Review the quality of profile fit
- 7. Move to next peak(s) and profile fit
- 8. Continue until entire pattern is fit


- 1. Open the XRD pattern
- 2. Overlay PDF reference for the sample





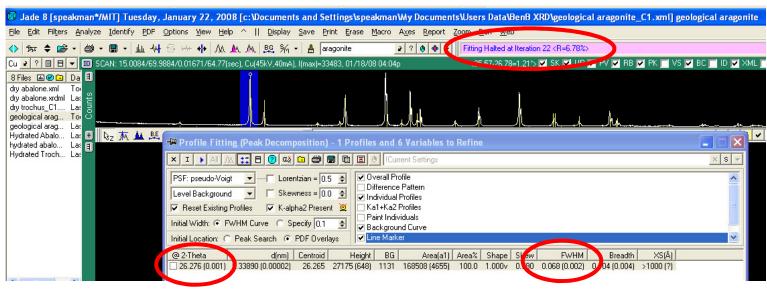

## 3. Zoom in on First Peak to Analyze

- try to zoom in on only one peak
- be sure to include some background on either side of the peak



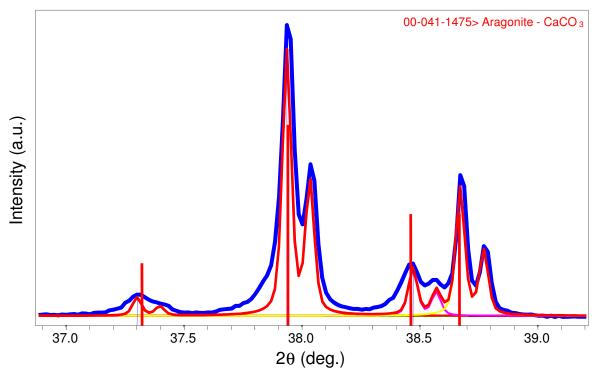


- 4. Open profile fitting dialogue to configure parameter
- when you open the profile fitting dialogue, an initial peak profile curve will be generated
- if the initial profile is not good, because initial width and location parameters were not yet set, then delete it
  - highlight the peak in the fitting results
  - press the delete key on your keyboard



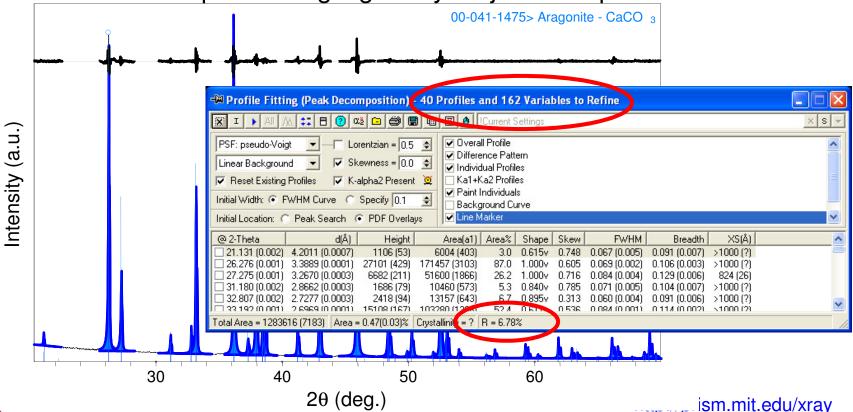

- 5. Once parameters are configured properly, click on the blue triangle to execute "Profile Fitting"
- you may have to execute the refinement multiple times if the initial refinement stops before the peak is sufficiently fit




### 6. Review Quality of Profile Fit

- The least-squares fitting residual, R, will be listed in upper right corner of screen
  - the residual R should be less than 10%
- The ESD for parameters such as 2-Theta and FWHM should be small, in the last significant figure






- 7. Move to Next Peak(s)
- In this example, peaks are too close together to refine individually
- Therefore, profile fit the group of peaks together
- Profile fitting, if done well, can help to separate overlapping peaks





- 8. Continue until the entire pattern is fit
- The results window will list a residual R for the fitting of the entire diffraction pattern
- The difference plot will highlight any major discrepancies



### **Instrumental FWHM Calibration Curve**

- The instrument itself contributes to the peak profile
- Before profile fitting the nanocrystalline phase(s) of interest
  - profile fit a calibration standard to determine the instrumental profile
- Important factors for producing a calibration curve
  - Use the exact same instrumental conditions
    - same optical configuration of diffractometer
    - same sample preparation geometry
    - calibration curve should cover the 2theta range of interest for the specimen diffraction pattern
      - do not extrapolate the calibration curve



#### **Instrumental FWHM Calibration Curve**

- Standard should share characteristics with the nanocrystalline specimen
  - similar mass absorption coefficient
  - similar atomic weight
  - similar packing density
- The standard should not contribute to the diffraction peak profile
  - macrocrystalline: crystallite size larger than 500 nm
  - particle size less than 10 microns
  - defect and strain free
- There are several calibration techniques
  - Internal Standard
  - External Standard of same composition
  - External Standard of different composition



### Internal Standard Method for Calibration

- Mix a standard in with your nanocrystalline specimen
- a NIST certified standard is preferred
  - use a standard with similar mass absorption coefficient
  - NIST 640c Si
  - NIST 660a LaB<sub>6</sub>
  - NIST 674b CeO<sub>2</sub>
  - NIST 675 Mica
- standard should have few, and preferably no, overlapping peaks with the specimen
  - overlapping peaks will greatly compromise accuracy of analysis

#### Internal Standard Method for Calibration

### Advantages:

- know that standard and specimen patterns were collected under identical circumstances for both instrumental conditions and sample preparation conditions
- the linear absorption coefficient of the mixture is the same for standard and specimen

### Disadvantages:

- difficult to avoid overlapping peaks between standard and broadened peaks from very nanocrystalline materials
- the specimen is contaminated
- only works with a powder specimen

#### **External Standard Method for Calibration**

- If internal calibration is not an option, then use external calibration
- Run calibration standard separately from specimen, keeping as many parameters identical as is possible
- The best external standard is a macrocrystalline specimen of the same phase as your nanocrystalline specimen
  - How can you be sure that macrocrystalline specimen does not contribute to peak broadening?

## Qualifying your Macrocrystalline Standard

- select powder for your potential macrocrystalline standard
  - if not already done, possibly anneal it to allow crystallites to grow and to allow defects to heal
- use internal calibration to validate that macrocrystalline specimen is an appropriate standard
  - mix macrocrystalline standard with appropriate NIST SRM
  - compare FWHM curves for macrocrystalline specimen and NIST standard
  - if the macrocrystalline FWHM curve is similar to that from the NIST standard, than the macrocrystalline specimen is suitable
  - collect the XRD pattern from pure sample of you macrocrystalline specimen
    - do not use the FHWM curve from the mixture with the NIST SRM



# Disadvantages/Advantages of External Calibration with a Standard of the Same Composition

#### Advantages:

- will produce better calibration curve because mass absorption coefficient, density, molecular weight are the same as your specimen of interest
- can duplicate a mixture in your nanocrystalline specimen
- might be able to make a macrocrystalline standard for thin film samples

#### Disadvantages:

- time consuming
- desire a different calibration standard for every different nanocrystalline phase and mixture
- macrocrystalline standard may be hard/impossible to produce
- calibration curve will not compensate for discrepancies in instrumental conditions or sample preparation conditions between the standard and the specimen



# External Standard Method of Calibration using a NIST standard

- As a last resort, use an external standard of a composition that is different than your nanocrystalline specimen
  - This is actually the most common method used
  - Also the least accurate method
- Use a certified NIST standard to produce instrumental FWHM calibration curve

# Advantages and Disadvantages of using NIST standard for External Calibration

#### Advantages

- only need to build one calibration curve for each instrumental configuration
- I have NIST standard diffraction patterns for each instrument and configuration available for download from <a href="http://prism.mit.edu/xray/standards.htm">http://prism.mit.edu/xray/standards.htm</a>
- know that the standard is high quality if from NIST
- neither standard nor specimen are contaminated

#### Disadvantages

- The standard may behave significantly different in diffractometer than your specimen
  - different mass absorption coefficient
  - different depth of penetration of X-rays
- NIST standards are expensive
- cannot duplicate exact conditions for thin films



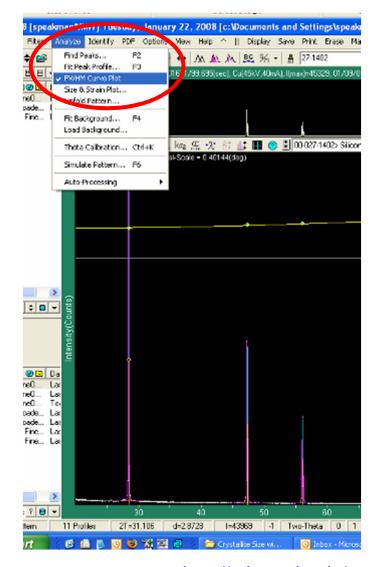
# Consider- when is good calibration most essential?

Broadening Due to Nanocrystalline Size

FWHM of Instrumental Profile at 48° 20

0.061 deg

| Crystallite Size | B(2θ)<br>(rad) | FWHM<br>(deg) |
|------------------|----------------|---------------|
| 100 nm           | 0.0015         | 0.099         |
| 50 nm            | 0.0029         | 0.182         |
| 10 nm            | 0.0145         | 0.871         |
| 5 nm             | 0.0291         | 1.745         |

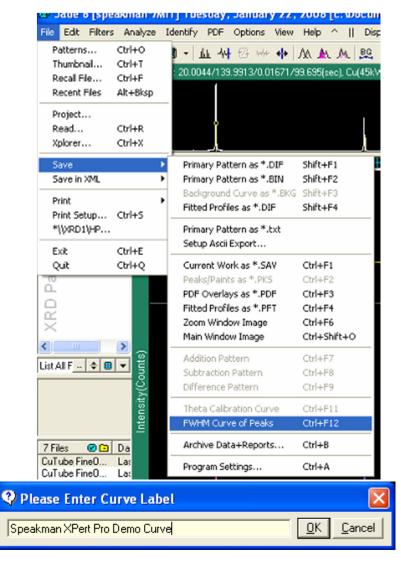

- For a very small crystallite size, the specimen broadening dominates over instrumental broadening
- Only need the most exacting calibration when the specimen broadening is small because the specimen is not highly nanocrystalline

## Steps for Producing an Instrumental Profile

- Collect data from calibration standard
- 2. Profile fit peaks from the calibration standard
- 3. Produce FWHM curve
- 4. Save FWHM curve
- 5. Set software preferences to use FHWH curve as Instrumental Profile

## Steps for Producing an Instrumental Profile

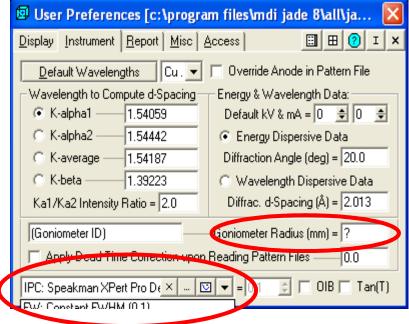
- Collect XRD pattern from standard over a long range
- 2. Profile fit all peaks of the standard's XRD pattern
  - use the profile function (Pearson VII or pseudo-Voigt) that you will use to fit your specimen pattern
  - indicate if you want to use FWHM or Integral Breadth when analyzing specimen pattern
- 3. Produce a FWHM curve
  - go to Analyze > FWHM Curve
     Plot






## Steps for Producing an Instrumental Profile

#### 4. Save the FWHM curve


- go to File > Save > FWHM Curve of Peaks
- give the FWHM curve a name that you will be able to find again
  - the FWHM curve is saved in a database on the local computer
  - you need to produce the FWHM curve on each computer that you use
  - everybody else's FHWM curves will also be visible



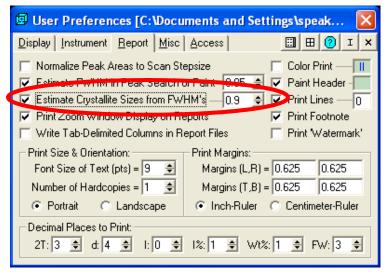


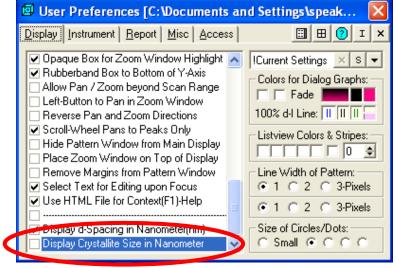
### Steps for Producing an Instrumental Profile

- 5. Set preferences to use the FWHM curve as the instrumental profile
- Go to Edit > Preferences
- Select the <u>Instrument</u> tab
- Select your FWHM curve from the drop-down menu on the bottom of the dialogue
- Also enter Goniometer Radius
  - Rigaku Right-Hand Side: 185mm
  - Rigaku Left-Hand Side: 250mm
  - PANalytical X'Pert Pro: 240mm





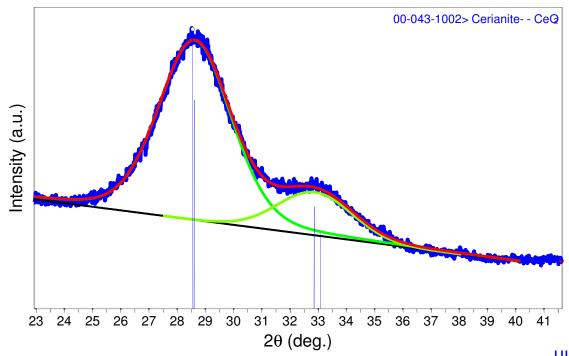

# Other Software Preferences That You Should Be Aware Of


#### Report Tab

- Check to calculate Crystallite
   Size from FWHM
- set Scherrer constant

#### Display tab

- Check the last option to have crystallite sizes reported in nanometers
- Do not check last option to have crystallite sizes reported in Angstroms

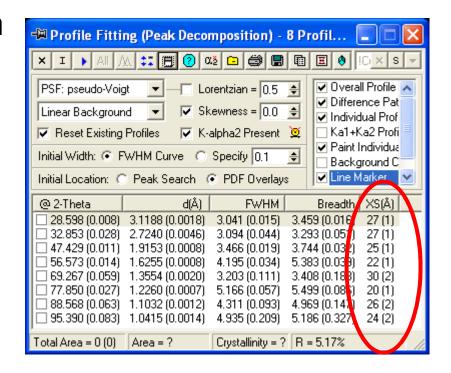






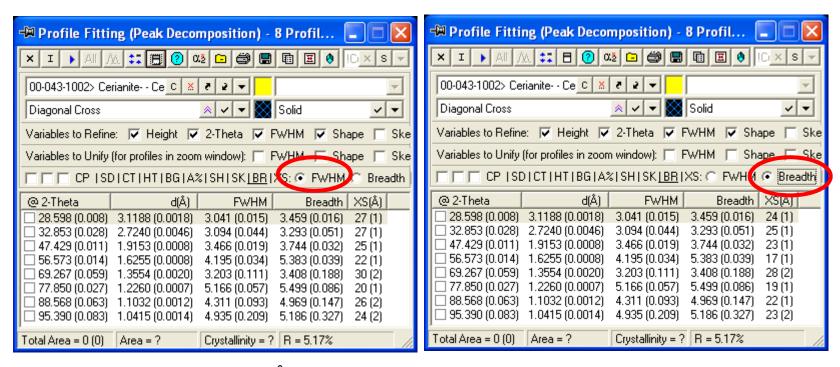

# Using the Scherrer Method in Jade to Estimate Crystallite Size

- load specimen data
- load PDF reference pattern
- Profile fit as many peaks of your data that you can






<u>πιφ.//prism.mit.edu/xray</u>


# Scherrer Analysis Calculates Crystallite Size based on each Individual Peak Profile

- Crystallite Size varies from 22 to 30 Å over the range of 28.5 to 95.4° 2θ
  - Average size: 25 Å
  - Standard Deviation: 3.4 Å
- Pretty good analysis
- Not much indicator of crystallite strain
- We might use a single peak in future analyses, rather than all 8

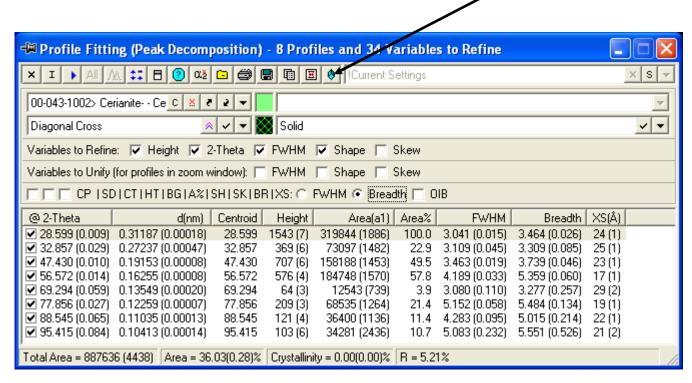




#### **FWHM** vs Integral Breadth



- Using FWHM: 25.1 Å (3.4)
- Using Breadth: 22.5 Å (3.7)
- Breadth not as accurate because there is a lot of overlap between peakscannot determine where tail intensity ends and background begins

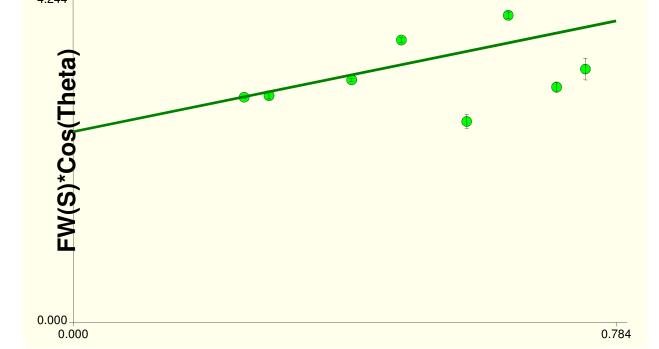

### **Analysis Using Different Values of K**

- For the typical values of 0.81 < K < 1.03</li>
  - the crystallite size varies between 22 and 29 Å
  - The precision of XRD analysis is never better than ±1 nm
  - The size is reproducibly calculated as 2-3 nm

| K    | 0.62 | 0.81 | 0.89      | 0.94      | 1  | 1.03 | 2.08      |
|------|------|------|-----------|-----------|----|------|-----------|
| 28.6 | 19   | 24   | 27        | 28        | 30 | 31   | 60        |
| 32.9 | 19   | 24   | 27        | 28        | 30 | 31   | 60        |
| 47.4 | 17   | 23   | 25        | 26        | 28 | 29   | 56        |
| 56.6 | 15   | 19   | 22        | 23        | 24 | 25   | 48        |
| 69.3 | 21   | 27   | 30        | 32        | 34 | 35   | 67        |
| 77.8 | 14   | 18   | 20        | 21        | 22 | 23   | 44        |
| 88.6 | 18   | 23   | 26        | 27        | 29 | 30   | 58        |
| 95.4 | 17   | 22   | 24        | 25        | 27 | 28   | 53        |
| Avg  | 17   | 22   | <b>25</b> | <b>26</b> | 28 | 29   | <b>56</b> |

### For Size & Strain Analysis using Williamson-Hull type Plot in Jade

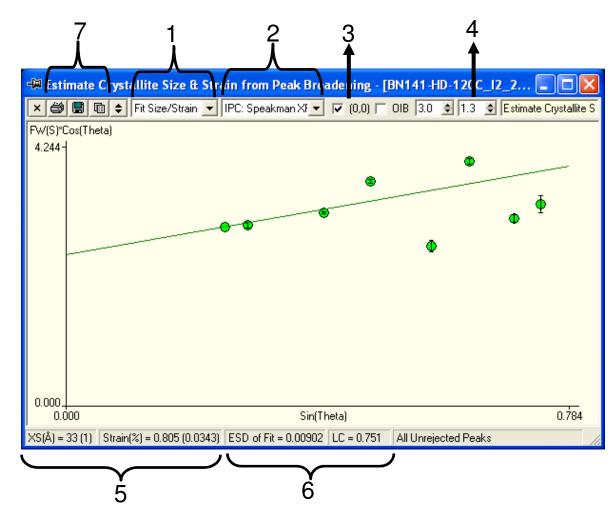
- after profile fitting all peaks, click size-strain button
  - or in main menus, go to Analyze > Size&Strain Plot






#### Williamson Hull Plot

$$FW(S) \times \cos(\theta) = \frac{K \times \lambda}{Size} + 4 \times Strain \times \sin(\theta)$$
y-intercept slope


\*Fit Size/Strain: XS(Å) = 33 (1), Strain(%) = 0.805 (0.0343), ESD of Fit = 0.00902, LC = 0.751





# Manipulating Options in the Size-Strain Plot of Jade

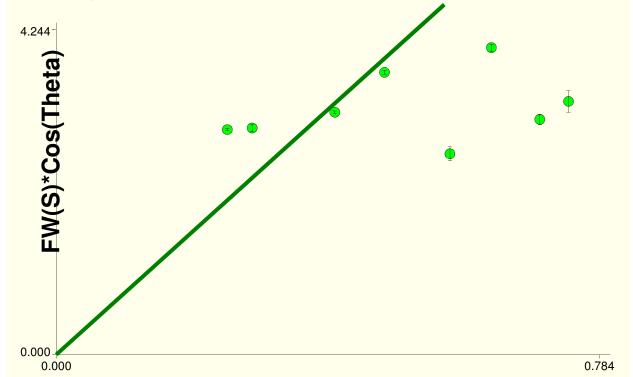
- Select Mode of Analysis
  - Fit Size/Strain
  - Fit Size
  - Fit Strain
- 2. Select Instrument Profile Curve
- 3. Show Origin
- 4. Deconvolution Parameter
- 5. Results
- Residuals for Evaluation of Fit
- 7. Export or Save





### **Analysis Mode: Fit Size Only**

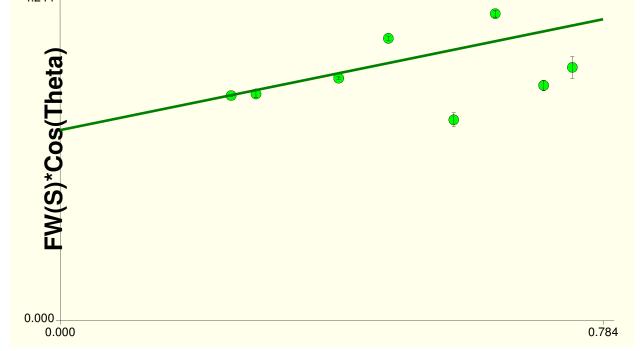
$$FW(S) \times \cos(\theta) = \frac{K \times \lambda}{Size} + \underbrace{4 \times Strain \times \sin(\theta)}_{\text{slope= 0= strain}}$$


\*Fit Size Only: XS(Å) = 26 (1), Strain(%) = 0.0, ESD of Fit = 0.00788, LC = 0.751



#### **Analysis Mode: Fit Strain Only**

$$FW(S) \times \cos(\theta) = \underbrace{\frac{K \times \lambda}{Size}}_{+ 4 \times Strain} \times \sin(\theta)$$
y-intercept= 0
size=  $\infty$ 


\*Fit Strain Only: XS(Å) = 0, Strain(%) = 3.556 (0.0112), ESD of Fit = 0.03018, LC = 0.751



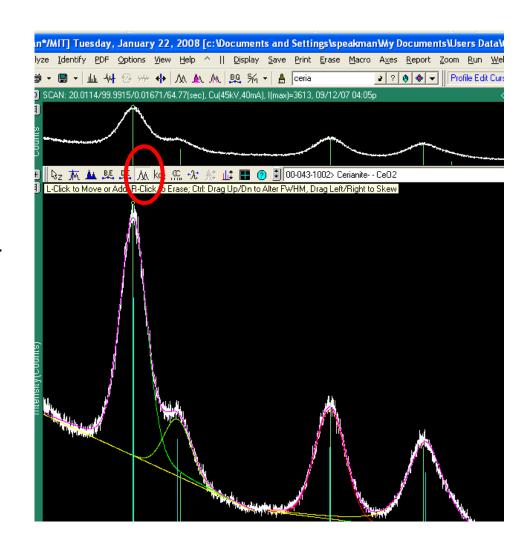
#### **Analysis Mode: Fit Size/Strain**

$$FW(S) \times \cos(\theta) = \frac{K \times \lambda}{Size} + 4 \times Strain \times \sin(\theta)$$

\*Fit Size/Strain: XS(Å) = 33 (1), Strain(%) = 0.805 (0.0343), ESD of Fit = 0.00902, LC = 0.751



### **Comparing Results**


#### **Integral Breadth**

#### **FWHM**

|                                  | Size (A) | Strain (%) | ESD of<br>Fit | Size(A) | Strain(%) | ESD of<br>Fit |
|----------------------------------|----------|------------|---------------|---------|-----------|---------------|
| Size<br>Only                     | 22(1)    | -          | 0.0111        | 25(1)   |           | 0.0082        |
| Strain<br>Only                   | -        | 4.03(1)    | 0.0351        |         | 3.56(1)   | 0.0301        |
| Size &<br>Strain                 | 28(1)    | 0.935(35)  | 0.0125        | 32(1)   | 0.799(35) | 0.0092        |
| Avg from<br>Scherrer<br>Analysis | 22.5     |            |               | 25.1    |           |               |

#### **Manually Inserting Peak Profiles**

- Click on the 'Profile Edit Cursor' button
- Left click to insert a peak profile
- Right click to delete a peak profile
- Double-click on the 'Profile Edit Cursor' button to refine the peak



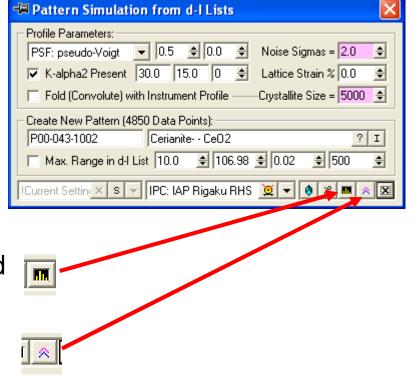


#### **Examples**

- Read Y2O3 on ZBH Fast Scan.sav
  - make sure instrument profile is "IAP XPert FineOptics ZBH"
  - Note scatter of data
  - Note larger average crystallite size requiring good calibration
  - data took 1.5 hrs to collect over range 15 to 146° 2θ
  - could only profile fit data up to 90° 2θ; intensities were too low after that
- Read Y2O3 on ZBH long scan.sav
  - make sure instrument profile is "IAP XPert FineOptics ZBH"
  - compare Scherrer and Size-Strain Plot
  - Note scatter of data in Size-Strain Plot
  - data took 14 hrs to collect over range of 15 to 130° 2θ
  - size is 56 nm, strain is 0.39%
- by comparison, CeO<sub>2</sub> with crystallite size of 3 nm took 41min to collect data from 20 to 100° 2θ for high quality analysis

#### **Examples**

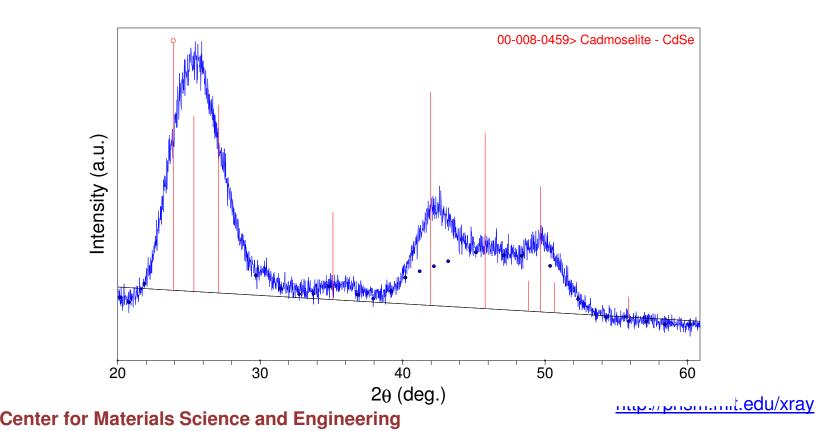
- Load CeO2/BN\*.xrdml
- Overlay PDF card 34-0394
  - shift in peak position because of thermal expansion
- make sure instrument profile is "IAP XPert FineOptics ZBH"
- look at patterns in 3D view
- Scans collected every 1min as sample annealed in situ at 500°C
- manually insert peak profile
- use batch mode to fit peak
- in minutes have record of crystallite size vs time


#### **Examples**

- Size analysis of Si core in SiO2 shell
  - read Si\_nodule.sav
  - make sure instrument profile is "IAP Rigaku RHS"
  - show how we can link peaks to specific phases
  - show how Si broadening is due completely to microstrain
  - ZnO is a NIST SRM, for which we know the crystallite size is between 201 nm
    - we estimate 179 nm- shows error at large crystallite sizes

# We can empirically calculate nanocrystalline diffraction pattern using Jade

- Load PDF reference card
- 2. go to *Analyze > Simulate Pattern*
- 3. In Pattern Simulation dialogue box
  - 1. set instrumental profile curve
  - 2. set crystallite size & lattice strain
  - 3. check fold (convolute) with instrument profile
- 4. Click on 'Clear Existing Display and Create New Pattern'
- 5. or Click on 'Overlay Simulated Pattern'


demonstrate with card 46-1212 observe peak overlap at 36° 2θ as peak broaden



Whole Pattern Fitting

### **Emperical Profile Fitting is sometimes difficult**

- overlapping peaks
- a mixture of nanocrystalline phases
- a mixture of nanocrystalline and macrocrystalline phase



# Or we want to learn more information about sample

- quantitative phase analysis
  - how much of each phase is present in a mixture
- lattice parameter refinement
  - nanophase materials often have different lattice parameters from their bulk counterparts
- atomic occupancy refinement

### For Whole Pattern Fitting, Usually use Rietveld Refinement

- model diffraction pattern from calculations
  - With an appropriate crystal structure we can precisely calculate peak positions and intensities
    - this is much better than empirically fitting peaks, especially when they are highly overlapping
  - We also model and compensate for experimental errors such as specimen displacement and zero offset
  - model peak shape and width using empirical functions
    - we can correlate these functions to crystallite size and strain
- we then refine the model until the calculated pattern matches the experimentally observed pattern
- for crystallite size and microstrain analysis, we still need an internal or external standard

### Peak Width Analysis in Rietveld Refinement

- HighScore Plus can use pseudo-Voigt, Pearson VII, or Voigt profile functions
- For pseudo-Voigt and Pearson VII functions
  - Peak shape is modeled using the pseudo-Voigt or Pearson VII functions
  - The FWHM term,  $H_K$ , is a component of both functions
    - The FWHM is correlated to crystallite size and microstrain
  - The FWHM is modeled using the Cagliotti Equation
    - U is the parameter most strongly associated with strain broadening
    - crystallite size can be calculated from U and W
    - U can be separated into (hkl) dependent components for anisotropic broadening

$$H_K = \left(U \tan^2 \theta + V \tan \theta + W\right)^{1/2}$$

# Using pseudo-Voigt and Pears VIII functions in HighScore Plus

- Refine the size-strain standard to determine U, V, and W for the instrumental profile
  - also refine profile function shape parameters, asymmetry parameters, etc
- Refine the nanocrystalline specimen data
  - Import or enter the U, V, and W standard parameters
  - In the settings for the nanocrystalline phase, you can specify the type of size and strain analysis you would like to execute
  - During refinement, U, V, and W will be constrained as necessary for the analysis
    - Size and Strain: Refine U and W
    - Strain Only: Refine U
    - Size Only: Refine U and W, U=W



#### **Example**

- Open ZnO Start.hpf
- Show crystal structure parameters
  - note that this is hexagonal polymorph
- Calculate Starting Structure
- Enter U, V, and W standard
  - U standard= 0.012364
  - V standard= -0.002971
  - W standard= 0.015460
- Set Size-Strain Analysis Option
  - start with Size Only
  - Then change to Size and Strain
- Refine using "Size-Strain Analysis" Automatic Refinement

# The Voigt profile function is applicable mostly to neutron diffraction data

- Using the Voigt profile function may tries to fit the Gaussian and Lorentzian components separately, and then convolutes them
  - correlate the Gaussian component to microstrain
    - use a Cagliotti function to model the FWHM profile of the Gaussian component of the profile function
  - correlate the Lorentzian component to crystallite size
    - use a separate function to model the FWHM profile of the Lorentzian component of the profile function
- This refinement mode is slower, less stable, and typically applies to neutron diffraction data only
  - the instrumental profile in neutron diffraction is almost purely Gaussian



#### HighScore Plus Workshop

- Jan 29 and 30 (next Tues and Wed)
  - from 1 to 5 pm both days
- Space is limited: register by tomorrow (Jan 25)
  - preferable if you have your own laptop
- Must be a trained independent user of the X-Ray SEF, familiar with XRD theory, basic crystallography, and basic XRD data analysis

#### **Free Software**

- Empirical Peak Fitting
  - XFit
  - WinFit
    - couples with Fourya for Line Profile Fourier Analysis
  - Shadow
    - couples with Breadth for Integral Breadth Analysis
  - PowderX
  - FIT
    - succeeded by PROFILE
- Whole Pattern Fitting
  - GSAS
  - Fullprof
  - Reitan
- All of these are available to download from <a href="http://www.ccp14.ac.uk">http://www.ccp14.ac.uk</a>

#### Other Ways of XRD Analysis

- Most alternative XRD crystallite size analyses use the Fourier transform of the diffraction pattern
- Variance Method
  - Warren Averbach analysis- Fourier transform of raw data
  - Convolution Profile Fitting Method- Fourier transform of Voigt profile function
- Whole Pattern Fitting in Fourier Space
  - Whole Powder Pattern Modeling- Matteo Leoni and Paolo Scardi
  - Directly model all of the contributions to the diffraction pattern
  - each peak is synthesized in reciprocal space from it Fourier transform
    - for any broadening source, the corresponding Fourier transform can be calculated
- Fundamental Parameters Profile Fitting
  - combine with profile fitting, variance, or whole pattern fitting techniques
  - instead of deconvoluting empirically determined instrumental profile, use fundamental parameters to calculate instrumental and specimen profiles

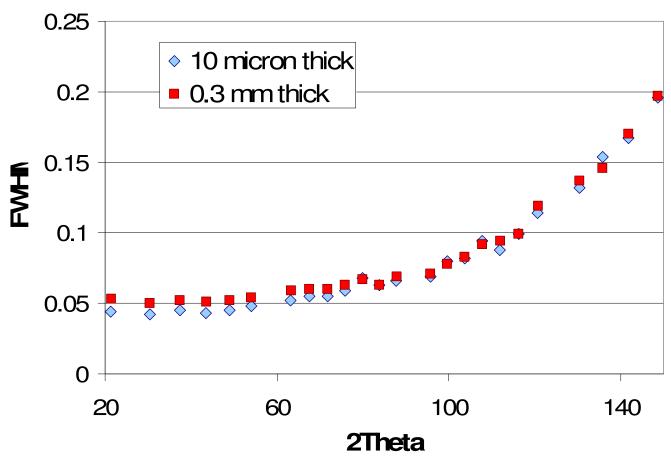


### **Complementary Analyses**

- TEM
  - precise information about a small volume of sample
  - can discern crystallite shape as well as size
- PDF (Pair Distribution Function) Analysis of X-Ray Scattering
- Small Angle X-ray Scattering (SAXS)
- Raman
- AFM
- Particle Size Analysis
  - while particles may easily be larger than your crystallites, we know that the crystallites will never be larger than your particles

#### **Textbook References**

- HP Klug and LE Alexander, X-Ray Diffraction Procedures for <u>Polycrystalline and Amorphous Materials</u>, 2<sup>nd</sup> edition, John Wiley & Sons, 1974.
  - Chapter 9: Crystallite Size and Lattice Strains from Line Broadening
- BE Warren, X-Ray Diffraction, Addison-Wesley, 1969
  - reprinted in 1990 by Dover Publications
  - Chapter 13: Diffraction by Imperfect Crystals
- DL Bish and JE Post (eds), <u>Reviews in Mineralogy vol 20: Modern Powder Diffraction</u>, Mineralogical Society of America, 1989.
  - Chapter 6: Diffraction by Small and Disordered Crystals, by RC Reynolds, Jr.
  - Chapter 8: Profile Fitting of Powder Diffraction Patterns, by SA Howard and KD Preston
- A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Dunod, 1956.
  - reprinted in 1994 by Dover Publications




#### **Articles**

- D. Balzar, N. Audebrand, M. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail, D. Louër, O. Masson, C.N. McCowan, N.C. Popa, P.W. Stephens, B. Toby, "Size-Strain Line-Broadening Analysis of the Ceria Round-Robin Sample", *Journal of Applied Crystallography* 37 (2004) 911-924
- S Enzo, G Fagherazzi, A Benedetti, S Polizzi,
  - "A Profile-Fitting Procedure for Analysis of Broadened X-ray Diffraction Peaks: I. Methodology," J. Appl. Cryst. (1988) 21, 536-542.
  - "A Profile-Fitting Procedure for Analysis of Broadened X-ray Diffraction Peaks. II. Application and Discussion of the Methodology" J. Appl. Cryst. (1988) 21, 543-549
- B Marinkovic, R de Avillez, A Saavedra, FCR Assunção, "A Comparison between the Warren-Averbach Method and Alternate Methods for X-Ray Diffraction Microstructure Analysis of Polycrystalline Specimens", *Materials Research* 4 (2) 71-76, 2001.
- D Lou, N Audebrand, "Profile Fitting and Diffraction Line-Broadening Analysis," Advances in X-ray Diffraction 41, 1997.
- A Leineweber, EJ Mittemeijer, "Anisotropic microstrain broadening due to compositional inhomogeneities and its parametrisation", Z. Kristallogr. Suppl. 23 (2006) 117-122
- BR York, "New X-ray Diffraction Line Profile Function Based on Crystallite Size and Strain Distributions Determined from Mean Field Theory and Statistical Mechanics", *Advances in X-ray Diffraction* **41**, 1997.



# Instrumental Profile Derived from different mounting of LaB<sub>6</sub>



In analysis of  $Y_2O_3$  on a ZBH, using the instrumental profile from thin SRM gives a size of 60 nm; using the thick SRM gives a size of 64 nm