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I. INTRODUCTION

The wetting phenomenon is an important issue in various technological
processes. In some fields, liquids are desired to spread over solid surfaces,
e.g., lubrication oils onmetallic surfaces or paint on paper. On the other hand,
it is necessary for hydrophobic coatings to repel water such as Teflon film on
frying pans. The behavior of bubbles on solid surfaces immersed in liquid
often has important effects on the performance of industrial apparatus
dealing boiling or condensation. In these problems regarding wetting, it is
known that the behavior of a drop or bubble on a solid surface is dependent
on the three interfacial tensions between solid, gas, and liquid phases, as
shown in Fig. 1. The tangential force balance between these interfacial
tensions on the three-phase contact line leads to the following well-known
Young’s equation [1]:

rSV � rSL ¼ rLV cos aY: ð1Þ

rSV, rSL, and rLV indicate solid–vapor, solid–liquid, and liquid–vapor
interfacial tensions, respectively. The environmental atmosphere is assumed
to be filled with saturated vapor of liquid. When a drop is exposed to air,
however, rLV usually does not change because a thin layer of saturated vapor
may be formed around the drop [2]. In the right-hand side of Eq. (1), aY is the
angle between the solid surface and the liquid–vapor interface measured from
the inside of the liquid phase and is called the contact angle. When the differ-
ence between the two interfacial tensions on the left-hand side of Eq. (1) is
large enough to make aY on the right-hand side small, the solid is favorably
wetted by the liquid. As the drop size becomes sufficiently small and the cur-
vature of the solid–gas–liquid contact line becomes quite large, we should add
a term representing the effect of line tension to the above equation [3]. In this
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case, such a term, i.e., line tension times the curvature of the three-phase
contact line, appears in the right-hand side of Eq. (1), and the contact angle
changes from aY to balance with the left-hand side. The line tension might
play an important role in the wetting phenomenon in some problems, al-
though this is not yet understood clearly. In this section, we do not touch on
the effect of line tension and we use Eq. (1) exclusively. Readers interested in
the role of line tension are referred to references [3].

We can regard the interfacial tension represented in Eq. (1) as the free
energy per unit area of the interface [4].This may be readily understood by
imagining a soap film surrounded by a square wire with onemovable side. The
liquid–vapor interfacial tension is equal to the work necessary to spread the
film surface by a unit area, opposing the tension acting on the movable side
[5]. Hence we can regard Eq. (1) as the relation between three kinds of en-
ergies, i.e., we can calculate the reversible energy change (rSV�rSL) using rLV
cos aY without knowledge of rSV or rSL themselves when a unit area of the
solid surface is wetted by liquid. It is usually not easy to directly measure the
interfacial tensions on the left-hand side of Eq. (1), and the wetting behavior is
often discussed using rLV and aY.

It is noted that Eq. (1) holds for an ideally smooth and homogeneous solid
surface. We cannot write the same relation as Eq. (1) for the contact angle
macroscopically observed on a practical solid surface with inhomogeneity
such as roughness or heterogeneity due to adsorption. As shown in Fig. 2,
different contact angles usually appear, depending on the direction of liquid
movement, i.e., the advancing contact angle hA is observed when the liquid
wets the solid surface, and the receding contact angle hR is observed as the
solid surface becomes dry upon the retreat of the liquid. This is called the
‘‘hysteresis phenomenon of the contact angle.’’ When we put a liquid drop
onto a solid surface without any special care, we usually observe a contact
angle between the above two extreme values. The hysteresis phenomenon is
influenced in a complicated manner by roughness and heterogeneity of the
solid surface and also by the irreversible movement of the three-phase contact
line. Many authors have extensively investigated the influence of these factors

FIG. 1 Force balance on solid–liquid–gas interface.
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on wetting behavior [6–21]. Although the mechanism of how the macroscopic
contact angles are determined is not yet clearly understood, we often use the
advancing or receding contact angles as basic quantities indicating the wet-
tability between a liquid and a solid surface. In this section, we call the contact
angle defined by Eq. (1) Young’s contact angle to distinguish it from the mac-
roscopically observed contact angles hA and hR.

The correct values of the liquid–vapor interfacial tension and contact angle
are necessary to analyze the wetting problems stated at the beginning of this
section. Many methods have thus far been proposed for the measurement of
these basic quantities. The methods may be classified into two categories,
i.e., (1) methods of measuring the dynamic quantities and (2) methods of
measuring the geometrical quantities. The Wilhelmy [22] and Du Noüy [23]
methods for the measurement of liquid–vapor interfacial tension are typical
examples of (1). In these methods, a clean glass plate or ring with zero contact
angle is drawn from the liquid and the liquid–vapor interfacial tension acting
on the periphery is measured directly using devices such as a microbalance.
These methods may also be applied to the measurement of the contact angle
by using a test plate, to which the test liquid attaches at certain contact angle,
instead of a glass plate [24]. The maximum bubble pressure or drop weight
method is another example of (1) for the measurement of interfacial tension
[25,26]. Both involve the use of force balance on the bubble or drop due to
interfacial tension. The interfacial tension is calculated from themeasurement
of pressure inside the bubble in the former method and from the drop weight
in the latter when it detaches from an orifice. Generally, the Wilhelmy, Du
Noüy, and drop weight methods are widely used for the measurement of
interfacial tension.

The capillary rise method is a classical example of category (2) for mea-
suring liquid–vapor interfacial tension, in which the liquid height in a cap-
illary tube is measured [27]. On the other hand, the geometrical shape of the

FIG. 2 Contact angle hysteresis observed when a drop rolls down on a slope.
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liquid–vapor interface, such as drop or bubble, is often used as the object of
measurement. It is well known that the geometry of the interface can be
determined by the following Laplace equation [28]:

rLV
1

R1
þ 1

R2

� �

¼ DP; ð2Þ

where R1 and R2 indicate the principle radii of curvature of the interface and
DP is the pressure difference between gas and liquid phases. Equation (2)
indicates the force balance acting on the liquid–vapor interface and can be
solved analytically or numerically. If DP, such as the static pressure of liquid
due to gravitational force, is known, the interfacial tension can be obtained by
measuring the geometric specifications of the interface, such as drop height
and radius [29–31]. Contact angles of the drop or bubble are often measured
directly using a telescope with a goniometer or in photographs [32]. The tilted
plate method is another example of direct measurement of the contact angle,
in which a plate immersed in liquid is tilted until the liquid meniscus becomes
horizontal at the point of contact [33]. The inclined angle of the plate is equal
to the contact angle. The method of using a sessile or pendant drop described
above can be applied to the measurement of the contact angle since the
geometrical shape is also dependent on the contact angle as a boundary
condition on the solid surface [34]. Sometimes the capillary rise of the
meniscus attached to a vertical plate is measured to obtain contact angles.
The geometry of the meniscus is also determined by Eq. (2), and the contact
angle can be easily calculated from the measured height [35].

All the above methods are classic for the measurement of the liquid–vapor
interfacial tension and the contact angle and have long been used. Detailed
reviews of the measurement of interfacial tension and the contact angle have
been given in Refs. [5] and [35–37]. Recently, the above methods have been
made more sophisticated and precise by using elaborate techniques such as
lasers, computers, and graphic data processing [39–52]. Please refer to those
references for details.

Each method mentioned above has its own advantage. However, the
methods of category (1) require an accurate apparatus for measuring force
because the surface tension is usually small. Similarly, an optical or other
device is necessary tomeasure the geometry of a drop or the liquidmeniscus in
methods of category (2) since they are not measured directly. Although many
sophisticated methods have been considered, the measurements of surface
tension and contact angle are generally not so easy and somewhat expensive.

In this section, we discuss a new method for measuring the liquid–vapor
interfacial tension and the contact angle based on a principle different from
those proposed in the past. One can see a liquidmeniscus formed under a solid
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such as a needle when it is drawn from a liquid bath. If the solid is raised
further, the meniscus spontaneously drops off the surface. This phenomenon
might be the result of some kind of thermodynamic or other instability and
might be related to the wetting characteristics between the solid and liquid. If
the mathematical relationship could be derived theoretically between the
critical height of the solid when the meniscus falls off and the wetting, we
could obtain the liquid–vapor interfacial tension or contact angle simply by
direct measurement of that height. Below, we first discuss the measurement
method based on the thermodynamic instability of the liquid meniscus. For
the theoretical consideration of instability, a method of calculating the energy
due to wetting behavior when hysteresis of contact angle occurs will be
proposed. Secondly, we discuss the feasibility of the method based on the
geometrical instability of the liquid meniscus.

II. MEASURING METHOD APPLYING THE
THERMODYNAMIC INSTABILITY OF LIQUID
MENISCUS

A. Hysteresis and Macroscopic Contact Angle

As stated in Section I, advancing and receding contact angles are observed in
the macroscopic wetting behavior. There have been many reports regarding
the effect of roughness or inhomogeneity on the hysteresis phenomenon of the
contact angle. Johnson and Dettre [7,36] considered the thermodynamic free
energy of a system consisting of a spherical drop on a solid surface with con-
centric regular roughness and heterogeneity. The free energy of the system
was calculated, varying the attached surface area of a drop of constant vol-
ume. There are numerous metastable states corresponding to the local
minima of the system energy. Johnson and Dettre explained the hysteresis
phenomenon by suggesting that the extreme contact angles among the
metastable states appear when the liquid advances or recedes. Later, Eick et
al. [8] and Li and Neumann [17] discussed in detail a problem similar to that
treated by Johnson and Dettre, but including gravitational energy. The
validity of those analyses was verified experimentally, to some extent, for a
surface with regular two-dimensional roughness [10,53]. On the other hand,
Joanny and de Gennes [12] and Jansons [13] considered the behavior of the
three-phase contact line when it moves past a single defect such as a circular
hollow or heterogeneous region. They showed that the state of force balance is
different between advancement and retreat of the contact line and also dis-
cussed the relation of hysteresis to irreversible dissipation occurring when the
contact line passes over the defect region. Although those reports presented
an interesting concept, the mechanism of hysteresis is not yet understood

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



completely. For example, Johnson and Dettre et al. discussed the wetting
behavior only for the static state, and the results obtained by Joanny and de
Gennes et al. are limited to the special case of a single defect. Besides the
roughness or heterogeneity stated above, some authors have discussed the
effect of line tension on the wetting behavior [3,54–56].

The theoretical considerations mentioned above are based on the assump-
tion that Eq. (1) holds locally on the solid surface, i.e., the inhomogeneous
surface is a collection of small homogeneous patches. In this case, the
infinitesimal energy change DEW when the liquid wets the solid surface
reversibly can be calculated at each local portion as

DEW ¼ �rLV cos aYDs; ð3Þ
where Ds indicates the infinitesimal surface area of one homogeneous patch.
In Eq. (3), Young’s contact angle aY is a function of position on the solid sur-
face. Hence it is necessary to integrate Eq. (3) for the calculation of EW over
the entire surface as

EW ¼ �rLV

ZZ

s

cos aYds: ð4Þ

In the above equation, effects of both the roughness (change of surface area)
and heterogeneity (change of aY) are included in the integration. It is noted
that Eq. (4) holds when the three-phase contact line moves quasi-statically
everywhere on the solid surface. We should add extra work if the three-phase
contact line moves irreversibly on the solid surface. One can see that the
calculation of EW is complicated and it may be unrealistic to integrate Eq. (4)
every timewe consider themacroscopicwetting behavior such asmentioned at
the beginning of this section.

Wenzel suggested a concept for defining the macroscopic contact angle
[57]. He considered a rough surface with constant aY. In this case, the energy
EW of Eq. (4) can be written as

EW ¼ �rLV cos aYrS; ð5Þ
where r indicates the ratio of the true area of the rough surface to the apparent
surface area S. Wenzel’s apparent contact angle hW is defined as

coshW ¼ r cos aY; ð6Þ
If Wenzel’s contact angle actually appears, we can easily calculate the energy
change EW by using measured hW as

EW ¼ �rLV cos hWS ð7Þ
We can avoid the difficulty of calculating r by using Eq. (7). In a similar
manner, for a smooth but heterogeneous solid surface composed of two
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regions with different Young’s contact angles aY1 and aY2, Cassie [58]
suggested the following apparent contact angle hC:

cos hC ¼ A1 cos aY1 þ A2 cos aY2; ð8Þ
where A1 and A2 indicate the proportion of surface area with aY1 and aY2,
respectively. We can also calculate EW if hC is used instead of hW in Eq. (7).
Although the analysis of the wetting problem can be greatly simplified by the
use of hW or hC, unfortunately, practically observed advancing or receding
contact angles are usually different from those angles [17,36]. The reason for
this may be considered as follows [11,13]. The definitions of hW and hC are
based on the reversible movement of the three-phase contact line since they
are derived from Eq. (3) or Eq. (4). However, irreversible motions inevitably
occur at some local positions in the actual wetting behavior. For example, one
can observe stick-slip motion when the contact line moves on an inhomoge-
neous solid surface. Also, extra work might be needed to form a residual drop
or gas bubble in a trough of the rough surface when the contact line passes
over it. These energies may possibly depend on the direction of contact line
movement, i.e., advance and retreat. Some authors consider that these ir-
reversible effects may be the cause of contact angle hysteresis, although the
details are not yet clear [11–13]. Wenzel’s or Cassie’s contact angles do not
consider the energies due to irreversibility. Hence we cannot use those angles
directly to calculate the actual energy change when the liquid wets the solid
surface by some apparent area.

In order to calculate EW in the macroscopic wetting behavior, here we
assume the following rather simple relation:

EW ¼ �rLV cos hS ð9Þ
DEW ¼ �rLV cos hDS ð10Þ

(h=hA for advancing and h=hR for receding).
Equation (10) is the differential form of Eq. (9). The above equationmeans

that the change of energy when the three-phase contact line advances or
recedes on the solid surface by apparent area S can be calculated by using the
macroscopically observed contact angles hA or hR. Equation (9) or Eq. (10)
suggests that the effect of irreversible energy change stated above could be
wholly reflected by the value of the macroscopic contact angles.

The validity of Eq. (9) or Eq. (10) may be justified by a simple fact. Let us
consider a plate with roughness or heterogeneity immersed slowly into a liquid
bath, as shown in Fig. 3. A liquid meniscus forms on the plate and its height
decreases gradually at the beginning of immersion.When the meniscus height
reaches a threshold value, it no longer changes and we can observe the
constant contact angle, i.e., advancing angle hA. The force �rLV coshA acts
constantly on the plate during immersion. Since the meniscus shape does not
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change, the potential energy and the energy related to the liquid–vapor
interface area remain constant. Hence the above force would contribute to
the work of the liquid wetting the solid plate, i.e., the energy change EW. In a
similar manner, the receding contact angle hR can be observed when the plate
is slowly drawn from the liquid, and the force�rLV cos hRproduces the energy
change EW. Equations (9) and (10) were verified more rigorously in Ref. [59].

The use of Eq. (9) or Eq. (10) makes it possible to calculate the energy
differenceEW from thewetting behavior without touching on the details of the
infinitesimal structure of the solid surface or the movement of the three-phase
line. In the following, we discuss the instability of the meniscus formed under
a solid surface from a thermodynamic viewpoint [60]. The system energy will
be estimated based on Eq. (9) or Eq. (10).

B. Wetting Behavior of Two-Dimensional Meniscus
Under a Horizontal Plate

One can observe that a meniscus attached to a horizontal plate spontaneously
falls off at a certain critical height of the plate. On the other hand, if the plate is
immersed into a liquid bath, the liquid spontaneously spreads and wets the
entire plate at a critical depth. In this section, we first discuss the unstable
phenomenon of a two-dimensional meniscus under a horizontal plate from a
thermodynamic viewpoint based on Eq. (10) above. Then, in order to verify

FIG. 3 Liquid–vapor interfacial tension acting on a plate moving quasi-statically:
(a) immersion of plate; (b) emersion of plate.
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the results, the same problem is considered according to the method in the
references [7,8,17,36], in which the infinitesimal effects on the solid surface are
taken into consideration.

The energy of the system illustrated in Fig. 4 is calculated when the two-
dimensional meniscus attaches to the horizontal plate at macroscopic contact
angle h. S, V, and L in the figure indicate the solid, vapor, and liquid phases,
respectively. The coordinates x and z are taken to be the horizontal and
vertical directions, respectively. The geometry of the meniscus can be ob-
tained from the solution of Laplace equation (2). The radius of curvature is
estimated from differential geometry. Considering the static pressure due to
gravitation as DP, Eq. (2) is rewritten for the two-dimensional case as [2]

rLV

d2z

dx2

1þ dz

dx

� �2
( )3=2

¼ Dqgz; ð11Þ

where Dq and g indicate the difference in density between the liquid and gas
phases and the gravitational acceleration, respectively. The nondimensional-
ized form of Eq. (11) can be written as:

z ¼ d2z=dx2

1þ dz=dxð Þ2
n o3=2

: ð12Þ

The quantities with an overbar ( ) indicate the length nondimensionalized by
the following capillary constant:

au
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rLV=Dqg
p

ð13Þ

FIG. 4 Two-dimensional meniscus attached to a horizontal plate.
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Equation (12) can be solved analytically. Using the inclination angle of the
meniscus w shown in Fig. 4, the meniscus geometry can be determined by [2]

x ¼ ln
1þ sinðw=2Þ
cosðw=2Þ

	 


� 2 sin
w
2

� �

þ C ð14Þ

z ¼ 2 cos
w
2
; ð15Þ

where C is the integral constant.
The infinitesimal energy change is considered when the three-phase contact

line shifts by an apparent length DS fromD to D1, as seen in Fig. 4. It is noted
that DS includes roughness or heterogeneity in itself. The contributions to the
energy increment are classified into the following three items [8,17]: (1) po-
tential energy of the meniscus DEP, (2) work necessary to increase the liquid–
vapor interfacial area DELV, and (3) energy change due to contact line
movement DEW. Before the energy of the system in Fig. 4 is discussed, let
us calculate energies (1) and (2) for the meniscus attached to an inclined plate,
as shown in Fig. 5, for the purpose of generality. Both can be obtained from

DEP ¼ dEP

dS
DS ¼ d

dS
Dqg

Z H

0

xz� z2

tan/

� �

dz

	 
� �

DS ð16Þ

DEP ¼ dELV

dS
DS ¼ d

dS
rLV

Z H

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdx=dzÞ2
q

dz �
Z l

0

dx

	 
� �

DS ð17Þ

where / and H indicate the angle of plate inclination and the attachment
height of the meniscus, as shown in Fig. 5, respectively. EP and ELV are the
potential and liquid–vapor interface energy of the meniscus as a whole,
respectively. In the above equations, the horizontal liquid surface is taken
as a reference state of energy EP and ELV. Referring to Li and Neumann [17],

FIG. 5 Two-dimensional meniscus attached to an inclined plate.
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the above calculation can be easily obtained by the use of meniscus geometry,
i.e., Eqs. (14) and (15). The sum of Eqs. (16) and (17) is written as

DEP þ DELV ¼ rLV cos hDS: ð18Þ

Equation (18) can also be applied to the meniscus under a horizontal plate
shown in Fig. 4. It is noted that in Eq. (18), we neglect the contribution from
the liquid in a trough of small roughness with higher order than DS. The en-
ergyDEW is dependent on the direction of contact linemovement (i.e., the sign
of DS), as stated by Eq. (10). The values of DEW for liquid advancement and
retreat are again written here as

DEW ¼ �rLV cos hADS ðadvancing; DS > 0Þ ð19aÞ
DEW ¼ �rLV cos hRDS receding; DS < 0ð Þ: ð19bÞ

The total energy change of the system,

DE ¼ DEP þ DELV þ DEW; ð20Þ
can be obtained from Eqs. (18), (19a), and (19b), and (dE/dS) is written as

dE

dS
¼ rLV cos h� cos hAð Þ ðadvancingÞ ð21aÞ

dE

dS
¼ rLVðcos h� cos hRÞ ðrecedingÞ: ð21bÞ

Now the behavior of meniscus as shown in Fig. 4 is discussed using Eqs.
(21a) and (21b). The meniscus height H shown in Fig. 4 is obtained from Eq.
(15) as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ cos hÞ
p

: ð22Þ

First, we discuss the case of meniscus height H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ cos hAÞ
p

, i.e., h>hA.
The following relation can be written for the differential coefficient of energy
from Eq. (21a).

dE

dS
< 0 ðadvancingÞ

Themeniscus spreads spontaneously andwets the entire plate since the system
energy decreases monotonically in the direction of advance of the contact line
(DS>0). In a similar manner, (dE/dS) for retreat can be written from Eq.
(21b) as

dE

dS
< 0 ðrecedingÞ:
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Since the energy increases in the direction of retreat (DS<0), the system is
stable for the retreat of the contact line.

Next, the case of H >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ cos hRÞ
p

, i.e., h<hR, is considered. The
following relation can be written for the retreat, from Eq. (21b),

dE

dS
> 0 ðadvancingÞ

dE

dS
> 0 ðrecedingÞ

Since the energy decreases in the direction of retreat (DS<0), the contact line
retreats spontaneously, and the meniscus finally falls off the plate.

Lastly, let us consider the system behavior when H is in the range of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ cos hAÞ
p

< H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ cos hRÞ
p

, i.e., hA<h<hR. The following
inequalities can be derived from Eqs. (23a) and (23b) for the differential
coefficient:

dE

dS
> 0 ðadvancingÞ

dE

dS
< 0 ðrecedingÞ

The contact line does not move since the energy increases in the directions of
both advance and retreat. This means that the two-dimensional meniscus is
stable for macroscopic contact angles between hA and hR.

It was demonstrated in the above discussion that the meniscus begins to
move when the contact angle reaches hA or hR, but does not move for angles
between hA and hR. This behavior is similar to that of a drop on a plate,
described in Section I. In the case of a meniscus under a horizontal plate,
however, the unstable phenomenon that the meniscus wets the entire surface
or falls off occurs at some critical height of the plate corresponding to
advancing or receding contact angles. Those phenomena can easily be
observed by the naked eye. This suggests the possibility of obtaining the
value of macroscopic contact angles by simple measurement of the critical
heights. Since the height of a solid surface can bemeasured directly, we do not
need any optical device, unlike the measurement of drop geometry or
capillary height of the meniscus.

The above results regarding the system energy can be schematically sum-
marized, as shown in Fig. 6. The figure shows the change of energy E with
apparent displacement S for various values of h. The energy curves in Fig. 6
are drawn straight according to the following relation:

d2E

dS2
¼ �rLV sin h

dh
dS

¼ 0: ð23Þ
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The above equation can be derived by the differentiation of Eq. (21) and (dh/
dS)=0 (the shape of a two-dimensional meniscus does not change with S, as
seen in Fig. 4). As shown in Fig. 6, the system becomes neutral stable when
h=hA or h=hR.

The above discussion is based on Eq. (9) or Eq. (10) in which the infin-
itesimal effects on the solid surface are assumed to be wholly reflected by the
macroscopic contact angles hA and hR. The use of Eqs. (9) and (10) makes it
simple to analyze the macroscopic wetting behavior of a two-dimensional
meniscus under a horizontal plate. In order to confirm the validity of the
analysis using Eqs. (9) and (10), the same problem is discussed using the
method in which the effect of roughness is taken into consideration. As stated
before, there have been many reports concerning the wetting behavior on a
rough surface. Unfortunately, the movement of the contact line on a surface
with random roughness is not yet understood completely. Here we choose the
relatively simple model for two-dimensional roughness treated by Eick et al.
[8]. As shown in Fig. 7, we discuss the two-dimensional meniscus under a
horizontal plate with a saw-tooth cross section. The surface is made up of a

FIG. 6 Schematic of system energy change with the shift of attachment position of

meniscus on a horizontal plate: the system becomes unstable when the energy mono-
tonically decreases in the direction of the shift.
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repetition of two small alternation slopes with the same inclination / to the
horizontal axis. Young’s contact angle aY is assumed to be constant over the
entire surface. As shown in the figure, h and b indicate the roughness height
and the angle between the meniscus and the solid surface from a microscopic
viewpoint, respectively. h is the macroscopically observed contact angle as
stated before. The change of system energy is considered when the contact line
shifts by Ds on the inclined side of roughness, where Ds represents the
infinitesimal distance along the side and is different from the apparent DS
used in Eqs. (10), (19a), and (19b). The work necessary to change the potential
energy and the liquid–vapor interfacial area of themeniscus can be calculated,
for the inclined plate, from Eq. (18) as

DEP þ DELV ¼ rLV cos bDs: ð24Þ
The energy change DEW due to the movement of the three-phase contact line
should be derived using Eq. (3), in this case, as

DEW ¼ �rLV cos aYDs: ð25Þ
From Eqs. (24) and (25), the rate of energy change is written as

dE

ds
¼ rLVðcos b� cos aYÞ: ð26Þ

The above equationmust be considered separately for side a and side b shown
in Fig. 7. The following relations are obtained for a and b if we substitute the
relations b=h�/ for a and b=h+/ for b into Eq. (26).

dE

ds

� �

a

¼ rLV cosðh� /Þ� cos aYf g ð27Þ

dE

ds

� �

b

¼ rLV cosðhþ /Þ� cos aYf g ð28Þ

FIG. 7 Two-dimensional meniscus attached to a horizontal plate with small saw-

tooth roughness: microscopic view of Fig. 4.
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First, let us consider the case of apparent contact angle h>aY+/ [i.e., the
meniscus height H <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f1þ cosðaY þ /Þg
p

from Eq. (22)]. The following
inequality holds, from Eqs. (27) and (28):

dE

ds

� �

b

<
dE

ds

� �

a

< 0: ð29Þ

The energy curve can be depicted as shown in Fig. 8 based on the above
relation. As is clear in the figure, the energy decreases monotonically for the
movement in the positive direction of s. Hence the meniscus spreads and wets
the entire plate spontaneously. The system becomes neutral stable at
h=aY+/, as shown in Fig. 9.

FIG. 8 System energy change with the shift of the meniscus shown in Fig. 7: in the

case of H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ cosðaY þ /Þf g
p

, at which the system is unstable in the advance
direction.

FIG. 9 System energy change with the shift of the meniscus in the case of H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ cosðaY þ /Þf g
p

, at which the system is neutral stable in the advance direction.
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Next, when h<aY�/ (i.e., H >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f1þ cosðaY � /Þg
p

), the following
relation can be derived for the differential coefficient of E in a similar manner
as Eq. (29).

dE

ds

� �

a

>
dE

ds

� �

b

> 0: ð30Þ

According to the above relation, the energy curve can be schematically shown
as that in Fig. 10. As seen in the figure, the meniscus is unstable in the receding
direction of the contact line and falls off the plate.When h=aY+/, the system
is at neutral stability, as in Fig. 9.

Finally, when aY�/<h<aY+/ (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f1þ cosðaY þ /Þg
p

< H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f1þ cosðaY � /Þg
p

), the following inequality holds:

dE

ds

� �

a

> 0;
dE

ds

� �

b

< 0: ð31Þ

Fig. 11 shows the energy curve obtained according to Eq. (31). The energy
exhibits a local minimum at the vertex of the roughness between a and b
shown in Fig. 7. The system is stable because there are many positions with
minimum energy.

Eick et al. [8] analyzed the wetting behavior of a two-dimensional meniscus
attached to a vertical plate with roughness similar to that depicted in Fig. 7.
They suggested the following relations for the macroscopically observed
contact angles.

hA ¼ aY þ / ð32aÞ
hR ¼ aY � / ð32bÞ

Using Eqs. (32a) and (32b), the above results from Eqs. (29)–(31) can be
summarized in Table 1. If Eqs. (32a) and (32b) are valid for the macroscopic

FIG. 10 System energy change with the shift of the meniscus in the case of H >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ cosðaY � /Þf g
p

, at which the system is unstable in the retreat direction.
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contact angles, the results given in Table 1 are the same as those shown in Fig.
6 derived based on Eq. (10). Similar results can be obtained for a smooth plate
with two-dimensional heterogeneity of regular shape [60]. Hence it seems to
be possible to analyze the macroscopic wetting behavior based on the
assumption of Eq. (9) or Eq. (10). The roughness or heterogeneity assumed
here is quite simple. The analysis would be more difficult for a general surface
with random characteristics if the infinitesimal effects were taken into
consideration. It is evident that the method of using Eqs. (9) and (10) is quite
simple compared with the above method.

C. Unstable Behavior of Axisymmetric Meniscus

It seems possible to measure contact angles by applying the thermodynamic
instability of a two-dimensional meniscus, as stated above. However, there
are many metastable positions on the horizontal plate as shown in Fig. 11,

TABLE 1 Wetting Behavior of Two-Dimensional Meniscus Under a Horizontal Plate:

The Behavior is Analyzed from a Microscopic Viewpoint

h H

Advance
of meniscus

Retreat
of meniscus

h > hA H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ coshAÞ
p

Unstable Stable
h = hA H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ coshAÞ
p

Neutral stable Stable

hR < hA < hA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ coshAÞ
p

< H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ coshRÞ
p

Stable Stable
h = hR H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ coshRÞ
p

Stable Neutral stable
h < hR H >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ coshRÞ
p

Stable Unstable

FIG. 11 System energy change with the shift of the meniscus in the case of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f1þ cosðaY þ /Þg
p

< H <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f1þ cosðaY � /Þg
p

at which the system is stable.
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which might make the recognition of instability difficult because the attach-
ment point of the meniscus could move among them even under a stable
condition. Also, it is actually not very easy to handle the two-dimensional
meniscus under a horizontal plate because an axisymmetric meniscus is
usually formed when the plate is drawn from a liquid bath. This may be
because the axisymmetric shape has less energy than a two-dimensional one.

In this section, let us consider the macroscopic wetting behavior of an
axisymmetric meniscus from a thermodynamic viewpoint and discuss the
possibility of the measurement of the contact angle and interfacial tension
[61]. As in the analysis stated above, the theoretical consideration is based on
the assumption described by Eq. (9).

The axisymmetricmeniscus under a conical surface is chosen as the subject,
as shown in Fig. 12. The cylindrical coordinates r and z are taken to be the
radial and horizontal directions, respectively. If some relations of differential
geometry are inserted into the radii of curvature in Laplace equation (2), the
profile of the axisymmetric meniscus can be determined by the following
differential equation [31,62].

r
d2r

dz2
� dr

dz

� �2

�1� 1

rLV
Dqgrz 1þ dr

dz

� �2
( )3=2

¼ 0 ð33Þ

The above equation is nondimensionalized by the use of capillary constant a
defined by Eq. (13).

r
d2r

dz2
� dr

dz

� �2

�1� r z 1þ dr

dz

� �2
( )3=2

¼ 0 ð34Þ

FIG. 12 Schematic of axisymmetric meniscus attached to a downward cone surface.
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where r u r/a and z u z/a. The boundary conditions of the meniscus profile
shown in Fig. 12 can be written as

z ! 0 :
dr

dz
! �l ð35Þ

z ¼ H : r ¼ r0; ð36Þ

where HuH/a and r0ur0/a indicate the height and radius of the meniscus at
the cone surface. In the following, quantities of length are all nondimension-
alized by a. Eqs. (34)–(36) were solved numerically [63,64]. Fig. 13 shows a
comparison of themeniscus profile calculated numerically with thatmeasured
from a photograph. As seen in the figure, the calculated results agree well with
the measured profile.

The system energy of Fig. 12 can be estimated by using the above solution
for the meniscus profile. As stated in the previous section, we consider the
potential energy EP, the energy of the liquid–vapor interfacial area ELV, and
the work done by the three-phase contact line wetting the cone surface EW.
The dry cone surface and the horizontal liquid surface (z=0) are taken for the
reference state of system energy. EP and ELV, which represent the work nec-
essary to form the axisymmetric meniscus shown in Fig. 12, are calculated
from

EP ¼ Dqg
Z H

0

kr2zdz�
Z H

HB

kðz�HBÞ2tan2/zdz

	 


ð37Þ

ELV ¼ rLV

Z H

0

2kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dr

dz

� �2
s

� dr

dz

8

<

:

9

=

;

dz� kr20

2

4

3

5; ð38Þ

FIG. 13 Comparison of axisymmetric meniscus profile obtained numerically with
that measured from a photograph.
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where / and HB indicate the half-vertical angle of the cone and the height of
the cone vertex, respectively. Using Eq. (9), the energy change EW, when the
three-phase contact line advances and wets the cone surface to the radius r0,
can be calculated as

EW ¼ �rLV
kr20
sin /

cos hA ðadvancingÞ ð39aÞ

In order to calculate EW in the receding direction, we should consider that,
first, the dry cone surface is completely wetted and then dries to r0. The energy
change during this process can be obtained as

EW ¼ rLV
kðR2 � r20Þ

sin /
cos hR � rLV

kR2

sin /
cos hA ðrecedingÞ

where R is the cone radius shown in Fig. 12. However, it is troublesome to
treat the constant quantities in the above equation every time because we are
mainly interested in the energy change from one state to another, i.e., the
displacement of the meniscus radius r0. Hence we omit the constant terms in
the above equation and write the following expression:

EW ¼ �rLV
kr20
sin /

cos hR ðrecedingÞ; ð39bÞ

Equations (37)–(39a,b) are nondimensionalized using the parameter (rLV
2/

Dqg).

EP ¼
Z H

0

kr
2

zdz�
Z H

HB

kðz� HBÞ2 tan2 / zdz ð40Þ

ELV ¼
Z H

0

2kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dr

dz

� �2
s

� dr

dz

8

<

:

9

=

;

dz� kr20 ð41Þ

EW ¼ � kr20
sin /

cos hA ðadvancingÞ ð42aÞ

EW ¼ � kr20
sin /

cos hR ðrecedingÞ ð42bÞ

The overbar, such as EP, means nondimensional energy. The total energy of
the system is calculated by summing the above equations.

E ¼ EP þ ELV þ EW ð43Þ
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First, let us discuss the axisymmetric meniscus attached to a vertical
circular cylinder, i.e., /=0j. For the cylinder, the energy EW is calculated
by the following equation instead of Eqs. (42a) and (42b).

EW ¼ �2kr0H cos hA ðfor advancingÞ ð44aÞ
EW ¼ �2kr0H cos hR ðfor recedingÞ ð44bÞ

Fig. 14a and b shows the calculated energy change with themeniscus height H
and with the apparent contact angle h for the advancement and the retreat of
the three-phase contact line. The nondimensional cylinder radius R=14.7 in
the figure corresponds toR=40mm for water of 25jC. Two energy curves are
depicted in each figure corresponding to advancing and receding, for which
hA=60j and hR=40j are assumed in the calculation of EW. As shown in Fig.
14a, the system exhibits a minimum energy at h=hA or h=hR for both curves.
This result is similar to that obtained conventional two-dimensional meniscus
attached to a smooth and homogeneous plate [8,17], although here we used
the macroscopic apparent contact angles for the calculation of EW.

Referring to the results of Fig. 14, let us consider thewetting behaviorwhen
the cylinder is immersed into a liquid bath in state A shown in Fig. 14, i.e., the
energy minimum at h=40j. Since the contact line advances on the cylinder

FIG. 14 System energy change with (a) the apparent contact angle h and (b) non-
dimensional meniscus height H , when axisymmetric meniscus attaches to a circular
cylinder. The system is stable at states C and A for advance and retreat of meniscus,

respectively.
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surface, we start from state B on the curve of hA=60j. The meniscus height H
decreases with the immersion of the cylinder from B because of the reduction
of energy fromB toC, as seen in Fig. 14b. Once the system reaches C, at which
energy is minimum, H no longer decreases and is constant. A similar
consideration holds for the retreat of the contact line. Inversely, when the
cylinder is raised fromC, we start at D on the curve hR=40j. Once the system
reaches A, H remains constant corresponding to h=40j. These results are the
same as those shown in Fig. 3 in Section I and indicate the general wetting
behavior of a meniscus attached to a plate or cylinder observed macroscopi-
cally. Here we can explain the mechanism by using the energy curves for
advancement and retreat, which were calculated based on the assumption of
Eq. (9) that the effects of infinitesimal roughness are entirely reflected in the
values of macroscopic contact angles.

Next, thewetting behavior is discussed for an axisymmetricmeniscus under
a horizontal plate. The calculated results of Eq. (43) for /=90j are shown in
Fig. 15 for the plate height H=1.62. We assume that hA=60j and hR=40j,
similar to Fig. 14. The abscissa r 0 in Fig. 15b is the meniscus radius of
attachment to the plate. As shown in Fig. 15a, the energy exhibits a maximum
value at each contact angle, contrary to the results shown in Fig. 14. These
results are quite different from the general understanding that the system is
stable when a liquid attaches to a solid surface at an intrinsic contact angle
[17]. One would expect that the axisymmetric meniscus under the horizontal
plate is unstable and it falls off orwets the entire surface spontaneously. This is
not true in practice, and we can explain the observed wetting behavior of the
meniscus by using the energy curves in Fig. 15 based on the assumption
proposed for the estimation of EW. We consider the system behavior in the
state between the twomaximaA and B shown in Fig. 15. As seen in the figure,
since the system energy increases in the directions of both advance and retreat,
the meniscus radius r 0 does not spread or shrink spontaneously, i.e., the
system is stable between A and B. On the other hand, when the system is
beyond the region betweenAandB, the contact linemoves spontaneously; for
example, when the system is on the right side of B, themeniscus wets the entire
surface because of the monotonic reduction of energy in the advancement
direction, as is clear from the energy curve for hA=60j shown in Fig. 15b.

If the plate height H is decreased from H=1.62 of Fig. 15 at the state
between A and B, the apparent contact angle h increases while r 0 remains
constant. The energy curve in Fig. 15b changes its profile during the reduction
of height H , i.e., state B at which energy is maximum gradually shifts to the
left, while the positions A and B in Fig. 15a remain unchanged. Finally, the
system coincides with state B when h reaches hA at a certain critical height of
the plate corresponding to the assumed radius r0 between A and B at H=1.62.
At that time, the system becomes unstable in the direction of advance and the
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FIG. 15 System energy change with (a) the apparent contact angle h and (b) non-
dimensional meniscus radius ro , when axisymmetric meniscus forms under a

horizontal plate. The system is stable between states A and B.
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liquid spontaneously wets the entire plate surface. In a similar manner, when
the plate is raised, h reaches hR at a certain critical height. The meniscus
becomes unstable for the retreat and falls off the plate surface. These pre-
dictions based on the energy curve describe the actual wetting behavior well.
The unstable phenomenon occurs at a certain critical height of the plate, as in
the case of the two-dimensional meniscus mentioned in Section II.B. This
critical height, however, depends not only on the contact angle, but also on the
meniscus radius r 0. Hence it should be necessary to measure the radius in
addition to the plate height if we apply the principle to the measurement of
contact angles. The measurement of the meniscus radius is not very easy com-
pared with that of the critical height, which makes this method unattractive.

Lastly, let us consider the meniscus attached to a cone surface. Fig. 16
shows the calculated results of the system energy for a cone surface of half-
vertex angle /=60j. As seen from Fig. 16a, the system exhibits both a
minimum and amaximum at each contact angle. It is recognized that the cone
surface has characteristics intermediate between those of a cylinder and a
plate. The system is stable at the radius r0 corresponding to the minimum
energy shown in Fig. 16b. Fig. 17 shows the energy curves for various heights

FIG. 16 System energy change with (a) apparent contact angle h and (b) non-
dimensional meniscus radius ro , when axisymmetric meniscus attaches to a down-
ward cone surface. The system energy exhibits both a minimum and a maximum at
advancing and receding contact angles.
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of the cone vertex HB. Here we assume the receding contact angle hR=60j.
When the height is relatively low, i.e., HB=0.45, the system energy becomes
maximum and minimum at the apparent contact angle h=60j, as shown in
Fig. 17a. Fig. 17b indicates that when the cone height is raised to HB=0.492,
the extreme states disappear from the energy curve and the energy monoton-
ically increases with r0. Hence the system becomes unstable in the direction of
retreat and the meniscus falls off the cone for HB higher than 0.492. The crit-
ical height is dependent only on the receding contact angle hR unlike the case
of the horizontal plate described above. Moreover, the meniscus radius r0 is
fixed to that of minimum energy under a stable condition such as HB=0.45 in
Fig. 17b, which is different from the two-dimensional meniscus under a
horizontal plate where there are many metastable positions on the plate
surface. This could make it easy to recognize when instability occurs. It may
be possible to obtain hR from the measured critical height of HB.

A similar result can be obtained for the axisymmetric meniscus attached to
an upward cone, as shown in Fig. 18. The coordinate z is taken to be the
downward direction, while the other variables are the same as in Fig. 12. HB

indicates the depth of the cone vertex. The system energy, instead of EW, can
be calculated in the samemanner as for the downward cone. Here we consider
the advance of the three-phase contact line. If we take the dry surface as a

FIG. 17 Energy curve for various cone heights HB shown in Fig. 12. The system

does not have energy minimum and becomes unstable in the direction of retreat of
meniscus when HB is larger than 0.492.
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reference state, the nondimensional energy EW required for the the three-
phase contact line to wet the surface to radius r0 in the inward direction can
be calculated as

EW ¼ kðr20 �R
2Þ

sin /
cos hA;

As stated previously in the derivation of Eq. (42b), the constant term is
omitted from the above equation for the purpose of simplicity:

EW ¼ kr20
sin /

cos hA: ð45Þ

The total energy of the system shown in Fig. 18 is obtained from the sum of
Eqs. (40), (41), and (45). Fig. 19 shows the calculated results for the advancing
contact angle hA=90j as an example. The system exhibits bothmaximum and
minimum energies at h=90j for HB smaller than a critical depth, similarly as
shown in Fig. 17. When HB is larger than 0.590, the energy has no extreme
value and increases monotonically with r0, as shown by Fig. 19b. Hence the
liquid spreads and wets the entire surface of the upward cone. We can obtain
the critical depth HB for each advancing contact angle. It is possible to
measure hA by the same method as for the receding contact angle if we reverse
the cone surface.

D. Measuring Method of Contact Angles and Surface
Tension Using the Cone Surface

As stated above, we theoretically discussed the unstable wetting behavior of
an axisymmetric meniscus attached to a cone surface. It was suggested that

FIG. 18 Schematic of axisymmetric meniscus attached to an upward cone surface.
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contact angles could be obtained by simple measurement of the critical height
at which the instability occurs [65]. In this section, the contact angles are
actually measured according to the principle suggested here. Fig. 20 shows the
functional relation between the critical height of the cone vertex H Bcr and
contact angles hR and hA for a cone of/=85j. The theoretical curve shown in
Fig. 20 was obtained from the height at which the energy has no extreme
values, as shown in Fig. 17 or Fig. 19. The contact angles can be calculated
from Fig. 20 if the critical height or depth HBcr is measured.

In order to confirm the principle stated above, a rather simple experiment
was carried out. The experimental apparatus used here is schematically
depicted in Fig. 21. The solid cone surface (1) is drawn from the liquid bath
(3) and the critical height at which the meniscus falls off is measured using a
micrometer (4). The bottom surface of (3) was chosen as the reference position
for the measurement of height. In this experiment, we used a capacitance
probe (6) tomeasure the position of the liquid surface [66]. In order to confirm
the method proposed here, the meniscus shape was photographed by a
camera (5) from the side of (3) and contact angles were read from the
photograph for each measurement of critical height. Water and ethanol
solution were used as test liquids. Table 2 shows the properties of the test
liquids and the range of temperature in the experiment. The temperature was
checked at each measurement of contact angles. The test cone surface was

FIG. 19 Energy curve for various cone depths HB shown in Fig. 18. The system has
no energy minimum and becomes unstable when HB is larger than 0.590.
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prepared using a lathe. In this experiment, solid surfaces of different materials
were prepared: brass, duralumin, vinyl chloride, and Teflon. Each test solid,
except Teflon, was finished by both turning and polishing to vary the surface
roughness.

First, the critical height was roughly measured. Then, the cone surface was
raised more slowly near the critical position determined above and HBcr, at
which the instability occurred, was precisely measured. The measurements of
HBcr’s were repeated five or six times under each set of experimental

FIG. 21 Schematic of experimental apparatus to measure contact angles using a
cone surface.

FIG. 20 The relation between contact angles and the critical cone height HBcr (f =

85j) at which the system becomes unstable as shown in Figs. 18 and 19.
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conditions. The scatter of critical height values was about 5/1000 mm, which
confirmed the good reproducibility of the measurement.

Fig. 22 shows the results of measurements. The theoretical curve depicted
in the figure is the same as that in Fig. 20. Each experimental point is a plot of
the measured critical height HBcr and the corresponding contact angle
obtained from the photograph. Hence the experimental points would lie on
the theoretical curve if the contact angles obtained by the method proposed
here coincided with those from the photograph. Fig. 22 shows rough
agreement between experimental points and the theoretical curve, which
indicates the feasibility of measurement using the method proposed here.
The disagreement with the curve may be mainly due to the difficulty of
measurement of contact angles from the photograph since the meniscus
attaches to a curved cone surface. The agreement indicated by Fig. 22 also
shows the validity of the discussion given in the preceding section, where we
analyzed the unstable wetting behavior based on Eq. (9) assumed in Section I.

Although only contact angles were measured here, the liquid–vapor
interfacial tension could also be measured based on the same principle. A
glass cone with zero contact angle with liquids could be used, instead of the
test solids described above, in the measurement of interfacial tension. The
critical height corresponding to hR=0j can be obtained as HBcr=1.508, from
Fig. 20, for /=85j. This relation can be rewritten in the dimensional form,
using the capillary constant defined by Eq. (13), as

HBcr ¼ 1:508

ffiffiffiffiffiffiffiffiffi

rLV
Dqg

r

: ð46Þ

If we measure the critical height HBcr when the liquid falls off the glass cone
surface, the liquid–vapor interfacial tension can be calculated from Eq. (46).

III. METHOD OF APPLYING GEOMETRICAL
INSTABILITY OF THE TWO-DIMENSIONAL
MENISCUS

In the preceding section, we discussed the method of applying the thermody-
namic instability of an axisymmetric meniscus attached to a cone surface. The

TABLE 2 Properties of Test Liquids

Liquid Temperature (jC) Density (kg/m3) Surface tension (N/m)

Water 12–19 998–1000 0.0736–0.0743
Ethanol solution 12–19 965–975 0.0368–0.0428
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FIG. 22 Comparison of contact angles measured by the proposed method with
those from a photograph: (a) advancing contact angle; (b) receding contact angle.

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



method has the merit of enabling the contact angle or liquid–vapor interfacial
tension to be obtained by direct measurement of the critical height. When the
method is applied to the measurement of contact angles, however, it may not
be convenient to prepare a cone surface as a test piece every time. Practically,
it is desirable to use a plate or circular cylinder for the measurement. In this
section, we discuss another measuring method of contact angles and interfa-
cial tension, in which the instability of a two-dimensional meniscus is applied
in a manner different from that proposed in the preceding section [67].

A. Principle of the Method

Fig. 23 schematically shows the principle of the method of using a circular
cylinder as the test solid. S, L, and V in the figure indicate solid, liquid, and
vapor phases, respectively. The cylinder held horizontally is first immersed
and then slowly drawn from the liquid bath. We can see a pair of two-
dimensional menisci formed under the cylinder, as shown in Fig. 23a. As the
cylinder is raised to a certain critical height, the waists of the two meniscus
curves contact each other and the liquid breaks off from the solid surface. The
geometry of the two-dimensional meniscus can be determined from the
Laplace equation (11) and the contact angle as a boundary condition, as
mentioned in Section I. Hence we could calculate the contact angle using the

FIG. 23 Principle of the method for the measurement of contact angle using cir-
cular cylinder based on geometrical instability of two-dimensional meniscus: (a) re-
ceding contact angle; (b) advancing contact angle.
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critical height at which the break-off of the meniscus occurs, as shown in Fig.
23a. Since the three-phase contact line recedes on the solid surface as the
cylinder is raised in the case of Fig. 23a, the receding contact angle hR would
be obtained by measuring the critical height. On the other hand, when the
cylinder is inversely immersed into a liquid bath, as shown in Fig. 23b, the
meniscus curves contact each other at a certain critical depth. In this case, the
meniscus is broken and the liquid wets the entire surface of the cylinder. Since
the contact line advances on the solid surface as the cylinder is immersed, we
can obtain the advancing contact angle from the measurement of the critical
depth.

Fig. 24 shows the principle of the method in a similar manner, for a plate
used as the test solid. As shown in Fig. 24a, the test plate S1 is fixed onto the
inclined surface of support S2 and is drawn up from the liquid bath. The two-
dimensionalmeniscus formed under S1 gradually approaches the support wall
as the test plate is raised. The waist of themeniscus curve contacts the wall at a
critical height and the meniscus breaks off from the solid surface. In a similar
manner to that for the horizontal cylinder, we could calculate the receding
contact angle from the measured critical height. Fig. 24b shows the measure-
ment of the advancing contact angle. In this case, the plate and support are
reversed, as shown in the figure. The three-phase contact line advances

FIG. 24 Principle of the method for the measurement of contact angle using tilted
plate based on geometrical instability of two-dimensional meniscus: (a) receding

contact angle; (b) advancing contact angle.
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gradually on the test plate as S1 and S2 are slowly immersed into the liquid. At
a critical depth of the plate, the liquid contacts the support wall and wets the
entire surface, as shown in the figure. The advancing contact angle could be
calculated by measuring the critical depth.

B. Relation Between Critical Height and Contact
Angle

As mentioned above, it is, in principle, possible to obtain contact angles by
measuring the critical height or depth at which the geometrical instability of a
two-dimensional meniscus occurs. Here the relationship between the critical
height of cylinder or plate and the contact angles is discussed theoretically.
First, let us consider the circular cylinder shown in Fig. 25. In the figure, the x-
and z-axes are taken to be the direction of the stationary liquid surface and the
vertical direction through the cylinder center, respectively. The height of the
cylinder bottomHB from the stationary liquid surface shown in Fig. 25 is used
as the measuring height of the cylinder. In this section, we use the nondimen-
sional solution of the Laplace equation, i.e., Eqs. (14) and (15), which de-
termines the geometry of the two-dimensional meniscus. The unknown
integral constant C in Eq. (14) should be determined from the boundary
condition. Since the meniscus is in contact with the cylinder of radius R at the
receding contact angle hR, as shown in Fig. 25, Eq. (14) should satisfy the
boundary condition

x ¼ x0 ¼ R sin / at w ¼ ð/þ hRÞ;

where x0 and / indicate the coordinate at the attachment point of the me-
niscus and the angle between the z-axis and the cylinder radius at the
attachment point, respectively, as seen in Fig. 25. w is the inclination of the

FIG. 25 Schematic of two-dimensional meniscus attached to a circular cylinder.
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meniscus curve from the x-axis. Using the capillary constant defined by Eq.
(13), the above boundary condition is rewritten in the nondimensional form
as

x ¼ x0 ¼ R sin / at w ¼ /þ hR:

Equation (14) can be rewritten as below if the constant C is calculated from
the boundary condition.

x ¼ ln

1þ sin
w
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ð47Þ

The angle / in the above equation gradually decreases with increasing
cylinder height. Finally, when the waists of two meniscus curves contact each
other, the x coordinate at w=p/2, i.e., x1 shown in Fig. 25, becomes zero.
Substituting w=p/2 into Eq. (47) and taking x=x1=0, the following relation
holds for the angle / when the meniscus breaks off from the solid surface:

R sin /� ln
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þ 2 sin
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þ ln 1þ
ffiffiffi
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p� �

�
ffiffiffi

2
p

¼ 0

ð48Þ

On the other hand, the meniscus height at the position of attachment to the
cylinder can be calculated from Eq. (15) as

H ¼ 2 cos
hR þ /

2

� �

: ð49Þ

Using the solution of Eq. (48) as /R in Eq. (49), the height of the cylinder
bottom HBcr under the critical condition can be obtained as follows from a
simple geometrical consideration:

HBcr ¼ 2 cos
hR þ /R

2

� �

� Rð1� cos /RÞ ðhR V 90BÞ ð50Þ

The above equation gives the critical height for receding contact angles hR less
than 90j. If hR becomes greater than 90j, the liquid falls offwhen the vertexes
of the two meniscus curves contact each other exactly at the bottom of the
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cylinder, as shown in Fig. 26. Since the inclination of the meniscus at the
vertex is equal to the receding contact angle hR, the critical height of the
cylinder can be calculated simply by using hR instead of w in Eq. (15) as

HBcr ¼ 2 cos
hR
2

� �

ðhR > 90BÞ: ð51Þ

The relationship for the advancing contact angle can be obtained in a
similar manner as described above. The details are not discussed here to avoid
repetition. We can readily obtain the relationship between the critical depth
and the advancing contact angle hA if we use (p�hA) instead of hR in Eqs. (48),
(50), and (51). Equation (48) is rewritten for hA as

R sin /A � ln

1þ cos
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ffiffiffi

2
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ð52Þ

Using the solution of the above equation as /A, the following relations
between the critical depth and the advancing contact angle can be given as

HBcr ¼ 2 sin
hA � /A

2

� �

� Rð1� cos /AÞ ðhA z 90BÞ ð53Þ

HBcr ¼ 2 sin
hA
2

ðhA < 90BÞ ð54Þ

Next, let us consider the relationship for a plate used as the test solid. As
shown in Fig. 27, we take the height of intersection B of test plate S1 with
support S2 as the measuring height HB. The z-axis is taken to be the vertical

FIG. 26 Critical condition for receding contact angle hR larger than 90j at which
the meniscus falls off the cylinder surface.
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direction through B. Fig. 27 indicates the critical condition just as the
meniscus curve contacts the S2 wall at C. The critical height of B, i.e., HBcr,
can be written as follows based on a simple geometrical consideration:

HBcr ¼ H� x0 tan /1

¼ 2 cos
hR þ /1

2

� �

� x0 tan /1

ð55Þ

Equation (15) was used to obtain the meniscus height H. As seen in Fig. 27, x0
and /1 indicate the nondimensional coordinate of the meniscus at the
attachment position and the inclination of the test plate, respectively. The
gradient of the meniscus curve becomes equal to that of the solid wall (i.e., /2

shown in the figure) at C. Hence the coordinate of the contact, zC, can be
calculated by using (p�/2) instead of w in Eq. (15) as

zC ¼ 2 sin
/2

2

� �

: ð56Þ

Using the above equation, the x coordinate of the contact, xC, can be
obtained geometrically as

xC ¼ HBcr � 2 sin
/2

2

� �	 


1

tan /2

: ð57Þ

Now we use Eq. (14) for the meniscus profile. When w=p�/2 is substituted
into the right-hand side of Eq. (14), the result should be equal to Eq. (57).
Hence we can determine the integral constant C in Eq. (14) under the critical
condition. Substituting the calculated C and w=hR+/1 at the attachment

FIG. 27 Schematic of critical condition at which meniscus contacts the surface of
the support S2.
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position of the meniscus to the test plate S1 into Eq. (14) again, x0 shown in
Fig. 27 can be obtained as follows:

x0 ¼ ln

1þ sin
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ð58Þ

Finally, the critical height HBcr shown in Fig. 27 is written as follows if Eq. (58)
is inserted into Eq. (55):
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When (hR+/1), i.e., the inclination of the meniscus from the horizontal at the
test plate, becomes greater than (p�/2), the meniscus does not contact
support S2 until it reaches B, as shown in Fig. 28. In this case, the three-
phase contact line might be trapped at the corner between S1 and S2 because
the tip of S2 would be slightly rounded. The meniscus would not break off

FIG. 28 Critical condition for receding contact angle hR larger than [p�(/1+/2)]:
the three phase line is trapped at the corner between S1 and S2.
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from the plate even if the plate was raised higher than the critical condition.
Hence the measurement applying Eq. (59) should be limited to the following
range of receding contact angles:

hR < k� ð/1 þ /2Þ ð60Þ

For the measurement of advancing contact angle hA, the test plate is
immersed inversely into a liquid bath, as shown in Fig. 24b. The critical depth
of the test plate can be obtained in the samemanner as for the receding contact
angle, so we do not discuss the details here. The relationship between the
critical depth at which instability occurs and hA can be calculated if we use
(p�hA) instead of hR in Eq. (59) as

HBcr ¼ 2 sin
hA � /1
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ð61Þ

According to the same reason as for Eq. (60), the measurement of the
advancing contact angle is limited to the following region:

hA > /1 þ /2 ð62Þ

Fig. 29 shows the relationship between hR or hA and HBcr calculated by
Eqs. (50), (51), (53), and (54) for cylinder and by Eqs. (54) and (61) for plate.
The calculated results are presented in the figures for several values of cylinder
radius H and inclinations/1 and /2. As seen in the figures, each critical height
or depth corresponds to one contact angle, which indicates the validity of the
method. In Fig. 29a for a circular cylinder, each curve for various R ’s
converges to one curve in the region of hR>90j or hA<90j. This is because
the meniscus falls off the solid surface exactly at the bottom of the cylinder, as
described by Fig. 26, and the critical height is not dependent on the cylinder
radius. In Fig. 29a, we can see that the gradient of the theoretical curves
becomes steep close to hR=0j and hA=180j for all cylinder radii. This is due
to the fact that the gradient of the meniscus curve becomes nearly horizontal

Copyright n 2004 by Marcel Dekker, Inc. All Rights Reserved.



at the attachment point for those contact angles. Hence the critical height
varies only slightly with the change of contact angle, i.e., dH/dhRc0. This
might be evident if we calculate (dH/dh) at h=0j from Eq. (22), which
determines the height of the meniscus attached to a horizontal plate. The
above fact indicates an inaccuracy in the measurement around such contact
angles. A similar tendency is observed in Fig. 29b for the plate used as the test
solid. However, the accuracy can be improved if we use the test plate and
support with large inclination in order to make the gradient of the meniscus
curve steep at the attachment point. In fact, the theoretical curves of /1=60j
and/2=90j have a gentle gradient near hR=0j and hA=180j comparedwith
other curves, as shown in Fig. 29b. However, the region in which measure-
ment is possible becomes more limited as /1 or /2 increases, as described by
Eq. (60) or Eq. (62). The vertical bar j in Fig. 29b shows the limit of
measurement. It would be desirable to prepare some supports with different
inclinations to measure various contact angles with sufficient accuracy.

FIG. 29 Theoretical relation between contact angle and nondimensional critical
height of (a) cylinder and (b) tilted plate.
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C. Critical Height for Measurement of the
Liquid–Vapor Interfacial Tension

In a similar manner to the measurement using the cone surface described in
Section II, it is possible to measure the liquid–vapor interfacial tension based
on the same principle as for the contact angle, if a glass cylinder or plate is
used as the test solid.

In the measurement using the glass cylinder, substitution of hR=0j into
Eq. (48) leads to the following relation in dimensional form, through the use
of Eq. (13).

ffiffiffiffiffiffiffiffiffi
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The above equation gives the angle / shown in Fig. 25 at which the meniscus
breaks off from the cylinder surface. We can obtain the solution of Eq. (63)
numerically for an arbitrary value of liquid–vapor interfacial tension if the
density of the test liquid is known. Assuming the solution of Eq. (63) to be /T,
Eq. (50) can be rewritten in dimensional form after the insertion of hR=0j as

HBcr ¼ 2

ffiffiffiffiffiffiffiffiffi
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2
� Rð1� cos /TÞ: ð64Þ

The critical height corresponding to the liquid–vapor interfacial tension can
be calculated by the above equation.

For the plate, we similarly substitute hR=0j into Eq. (59) and rewrite the
equation in dimensional form. The relation between the liquid–vapor inter-
facial tension and the critical height HBcr can be written as
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Fig. 30 shows the relation between (rLV/Dq) andHBcr for the cylinder and the
plate. As seen in the figure, the liquid–vapor interfacial tension can be
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obtained by measuring the critical height, in a same manner as for the contact
angle. Although there were some regions in which the measurement of the
contact angle was inaccurate, as mentioned in the preceding section, it is
possible to measure the liquid–gas interfacial tension correctly over its entire
range for both cylinders and plates, as shown in Fig. 30.

D. Experiment

The results described in Sections III.B and III.C indicate that it is possible to
measure the liquid–vapor interfacial tension as well as the contact angle using
the same apparatus if the test cylinder or plate is changed according to the
desired measurement. An experiment was carried out to actually measure
contact angles and interfacial tensions based on the principle described in the
preceding sections. Since the main purpose here is to confirm the validity of
the principle and to perform measurement using a simple apparatus, the
accuracy is not of high concern in this experiment.

Fig. 31 shows the schematic of the experimental apparatus used. The
apparatus is similar to, but slightly modified from, that used for the work
described in Section II.D. The test cylinder or plate (4) is attached to the
feeding device and drawn from vessel (1) filled with test liquid (2). The critical
heightHBcr at which the liquid falls off from the test surface is measured by a
micrometer (3) from the bottom surface of (1) as the reference plane. For the
measurement of the advancing contact angle, the cylinder or plate is inversely
immersed into the test liquid and the critical depth is measured in the same
manner. The distance between the liquid surface and the reference plane is
measured by the needle contact method [68], which is simple compared with

FIG. 30 Theoretical relation between liquid–vapor interfacial tension and critical
height: (a) circular cylinder; (b) tilted plate.
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the capacitance probemethod used in Section II.D. A probewith a thin needle
is fed by a micrometer. When the tip of the needle contacts the liquid surface
or the bottom of the vessel (1), a simple circuit is closed, as shown in Fig. 31.
The position of the liquid surface can be measured by the micrometer when a
signal from a galvanometer is detected. Although a liquid without conduc-
tivity is used, we can determine the position to within 1/100 mm by the naked
eye, using a mirror to observe when the needle comes into contact with the
liquid surface [35]. The liquid meniscus formed under a solid surface may not
remain two-dimensional. Hence, in this experiment, thin plates are fixed to
both ends of the test cylinder or plate, as shown in Fig. 32, to maintain the
two-dimensionality of the meniscus. The liquid near the ends is fixed by the
plates and does not shrink to the middle part of the cylinder. Although
the liquid layer may become thick and the meniscus loses two-dimensionality

FIG. 31 Schematic of experimental apparatus for the measurement of contact angle
and liquid–vapor interfacial tension.

FIG. 32 Side view of the measurement of critical height using circular cylinder: side
plates are fixed on the ends of the cylinder to maintain the two-dimensionality of
the meniscus.
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near the end plates, the critical height can be measured correctly because the
instability of the meniscus, as described in Figs. 23 and 24, occurs around
the central region of the cylinder where the meniscus is two-dimensional. The
length of the test cylinder or plate should be about 10 times the meniscus
height in order to maintain two-dimensionality in the central region.

Six kinds of solid surfaces were prepared for the measurement of the
contact angle: brass, duralumin, stainless steel, vinyl chloride, nylon, and
Teflon. In a similar manner as the method using the cone surface described in

FIG. 33 Comparison of contact angles measured by the proposed method using

circular cylinder with those from a photograph: (a) advancing contact angle; (b)
receding contact angle.
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Section II.D, each material was finished by several methods, such as lathing
and polishing, in order to measure contact angles for various surface rough-
nesses. The test liquids were water and 15% ethanol solution for the
measurement of the contact angle and water, four kinds of ethanol solution
of different concentrations, and two kinds of machine oils for the measure-
ment of the liquid–vapor interfacial tension.

For comparison, the contact angle was also measured from a photograph
for the cylinder and by using a commercially available contact angle meter
(KyowaKaimenKagakuCA-A type) for the plate, in which the contact angle
of a drop is measured using a telescope with a goniometer. The liquid–vapor
interfacial tension was also measured by the Wilhelmy method using a

FIG. 34 Comparison of contact angles measured by the proposed method using
tilted plate with those by a commercially available contact angle meter: (a) advancing

contact angle; (b) receding contact angle.
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commercially available surface tension meter (Kyowa Kaimen Kagaku
CBVP-A3 type).

Themeasured results of contact angles for the cylinder and for the plate are
shown in Figs. 33 and 34, respectively. The experimental points in the figures
are plotted in the same manner as in Fig. 22 in Section II.D, i.e., by using the
measured critical height HBcr (abscissa) and the contact angle measured from
a photograph or using a contact angle meter (ordinate). If the results
measured by the two different methods agreed with each other, the experi-
mental points should lie on the theoretical curves obtained in the preceding
section, as shown in the figures. There is some scatter of data in Fig. 33b for
the receding contact anglemeasured using a cylinder. Thismay be due to error
in the photographmethod because it is difficult tomeasure contact angles on a

FIG. 35 Comparison of liquid–vapor interfacial tension measured by the proposed

method with those by a commercially available surface tensiometer: (a) circular
cylinder; (b) tilted plate.
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curved surface. For the plate used as the test solid, on the other hand, the
theoretical curves fit the data well for both receding and advancing contact
angles, as shown in Fig. 34. The discrepancy from the curve is about 2j, which
is roughly the same value as the error in the direct method using a goniometer.
The error in critical height measured using the apparatus shown in Fig. 31 is
about 1/100 mm, which corresponds to less than 10�2 in nondimensional
height HBcr and to the error of F1j in the contact angle at hR=45j.

Fig. 35 shows the experimental results of the interfacial tension rLV
measured by the same method as the contact angle, using a glass cylinder
or plate as test solid. The experimental points in the figures are plotted using
rLV measured by the Wilhelmy method and critical heights. As shown in the
figures, it is possible to measure the interfacial tension by the method
proposed here. The discrepancy between experimental points and the theo-
retical curve is less than 0.2�10�3 (N/m), which roughly corresponds to the
degree of error in the Wilhelmy method used in this experiment. The error of
1/100mm in the critical height mentioned above corresponds to 0.2�10�3 (N/
m) in liquid–vapor interfacial tension. It is possible to measure the interfacial
tension by the method proposed here to about the same accuracy as the
Wilhelmy method.

IV. DISCUSSION

Two kinds of methods were proposed for the measurement of the contact
angle and the liquid–vapor interfacial tension; one applies the thermodynam-
ic instability and the other is based on the geometrical instability of the
meniscus attached to a solid surface. In Section II, the thermodynamic
instability of an axisymmetric meniscus formed under a cone was analyzed
based on the assumption discussed in Section I, which makes it possible to
calculate the energy change due to the macroscopic wetting behavior of the
three-phase contact line on a rough and heterogeneous surface. The relation
between the contact angle or liquid–vapor interfacial tension and the critical
height of a cone when the axisymmetric meniscus spontaneously falls off the
solid surface due to thermodynamic instability was obtained theoretically.
Themethod proposed in Section III is based on the phenomenon that the two-
dimensional meniscus breaks off from a circular cylinder or plate at a critical
height. The contact angle and the liquid–vapor interfacial tension can be
obtained simply by measuring the critical height in both methods without the
need for any optical or dynamical apparatus.

In themethod applying thermodynamic instability, described in Section II,
the critical condition at which the instability occurs is not so obvious because
the movement of the three-phase line is slow. This method also has the
disadvantage that a cone surface must be prepared for each test in order to
measure contact angles. On the other hand, it is easier to recognize the
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meniscus break-off in the method based on the geometrical instability
discussed in Section III. In particular, the phenomenon can be seen more
clearly when a circular cylinder is used as the test solid. However, when a
solution of surface-active materials was used as the test liquid, a pair of two-
dimensional menisci did not break under the critical condition shown in Fig.
23 since the liquid forms a thin soap-like film as shown in Fig. 36. The film
maintains until it becomes a monolayer. Hence we cannot measure the
contact angle by the method using a circular cylinder when the liquid includes
surface-active materials. On the other hand, the meniscus formed under the
inclined plate still breaks off even if surfactant solution is used since it contacts
the wall of support S2, as illustrated in Fig. 24. The method using a plate has
another advantage in that it is possible to compensate the inaccuracy of the
measurement near hR=0j or hA=180j if we use a support with a different
inclination angle, as stated in Section III.B.

For themeasurement of the liquid–vapor interfacial tension, we can use the
three kinds of glass surfaces stated above, except when surfactant solution is
usedwith a cylinder. The plate would be themost easily available among these
surfaces. However, we must take care to clean the support or side plates
shown in Figs. 24 and 32, as well as the glass plate, in order to not pollute the
test liquid.
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